首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Caulobacter crescentus DNA methyltransferase CcrM (M.CcrMI) methylates the adenine residue in the sequence GANTC. The CcrM DNA methyltransferase is essential for viability, but it does not appear to be part of a DNA restriction-modification system. CcrM homologs are widespread in the alpha subdivision of gram-negative bacteria. We have amplified and sequenced a 258-bp region of the cerM gene from several of these bacteria, including Rhizobium meliloti, Brucella abortus, Agrobacterium tumefaciens, and Rhodobacter capsulatus. Alignment of the deduced amino acid sequences revealed that these proteins constitute a highly conserved DNA methyltransferase family. Isolation of the full-length ccrM genes from the aquatic bacterium C. crescentus, the soil bacterium R. meliloti, and the intracellular pathogen B. abortus showed that this sequence conservation extends over the entire protein. In at least two alpha subdivision bacteria, R. meliloti and C. crescentus, CcrM-mediated methylation has important cellular functions. In both organisms, CcrM is essential for viability. Overexpression of CcrM in either bacterium results in defects in cell division and cell morphology and in the initiation of DNA replication. Finally, the C. crescentus and R. meliloti ccrM genes are functionally interchangeable, as the complemented strains are viable and the chromosomes are methylated. Thus, in both R. meliloti and C. crescentus, CcrM methylation is an integral component of the cell cycle. We speculate that CcrM-mediated DNA methylation is likely to have similar roles among alpha subdivision bacteria.  相似文献   

2.
The DNA methylation is a post-replicative event that provides secondary information to that formed by DNA. Addition of this information involves DAM methyltransferase, which methylates DNA on specific sites (5'-GATC-3'). This modification of DNA may play a role in regulating various processes in eukaryote or prokaryote cells. It was well understood that deoxyadenosine methyltransferase (DAM) methylates the adenine of the GATC sequence. Following DNA replication, however, DNA is transiently hemimethylated, and the new strand is then methylated by DAM. In Escherichia coli, removing the dam gene produces several phenotypes indicating multiple functions of methylation: (i) modulation of gene expression, (ii) DNA repair, (iii) initiation of replication, and (iv) stabilising the chromosome.  相似文献   

3.
The CcrM DNA methyltransferase of the alpha-proteobacteria catalyzes the methylation of the adenine in the sequence GAnTC. Like Dam in the enterobacteria, CcrM plays a regulatory role in Caulobacter crescentus and Rhizobium meliloti. CcrM is essential for viability in both of these organisms, and we show here that it is also essential in Brucella abortus. Further, increased copy number of the ccrM gene results in striking changes in B. abortus morphology, DNA replication, and growth in murine macrophages. We generated strains that carry ccrM either on a low-copy-number plasmid (strain GR131) or on a moderate-copy-number plasmid (strain GR132). Strain GR131 has wild-type morphology and chromosome number, as assessed by flow cytometry. In contrast, strain GR132 has abnormal branched morphology, suggesting aberrant cell division, and increased chromosome number. Although these strains exhibit different morphologies and DNA content, the replication of both strains in macrophages is attenuated. These data imply that the reduction in survival in host cells is not due solely to a cell division defect but is due to additional functions of CcrM. Because CcrM is essential in B. abortus and increased ccrM copy number attenuates survival in host cells, we propose that CcrM is an appropriate target for new antibiotics.  相似文献   

4.
The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the alpha-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica.  相似文献   

5.
The dam gene of Escherichia coli encodes a DNA methyltransferase that methylates the N6 position of adenine in the sequence GATC. It was stably expressed from a shuttle vector in a repair- and recombination-proficient strain of Bacillus subtilis. In this strain the majority of plasmid DNA molecules was modified at dam sites whereas most chromosomal DNA remained unmethylated during exponential growth. During stationary phase the amount of unmethylated DNA increased, suggesting that methylated bases were being removed. An ultraviolet damage repair-deficient mutant (uvrB) contained highly methylated chromosomal and plasmid DNA. High levels of Dam methylation were detrimental to growth and viability of this mutant strain and some features of the SOS response were also induced. A mutant defective in the synthesis of adaptive DNA alkyltransferases and induction of the adaptive response (ada) also showed high methylation and properties similar to that of the dam gene expressing uvrB strain. When protein extracts from B. subtilis expressing the Dam methyltransferase or treated with N-methyl-N'-nitro-N-nitroso-guanidine were incubated with [3H]-labelled Dam methylated DNA, the methyl label was bound to two proteins of 14 and 9 kD. Some free N6-methyladenine was also detected in the supernatant of the incubation mixture. We propose that N6-methyladenine residues are excised by proteins involved in both excision (uvrB) and the adaptive response (ada) DNA repair pathways in B. subtilis.  相似文献   

6.
The gene encoding the DNA methyltransferase M.CviRI from Chlorella virus XZ-6E was cloned and expressed in Escherichia coli. M.CviRI methylates adenine in TGCA sequences. DNA containing the M.CviRI gene was sequenced and a single open reading frame of 1137 bp was identified which could code for a polypeptide of 379 amino acids with a predicted molecular weight of 42,814. Comparison of the M.CviRI predicted amino acid sequence with another Chlorella virus and 14 bacterial adenine methyltransferases revealed extensive similarity to the other Chlorella virus enzyme.  相似文献   

7.
8.
The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then to S-adenosylmethionine. The enzyme methylates an oligonucleotide containing two dam sites and a 879 bp PCR product with four sites in a fully processive reaction. On lambda-DNA comprising 48,502 bp and 116 dam sites, E. coli dam scans 3000 dam sites per binding event in a random walk, that on average leads to a processive methylation of 55 sites. Processive methylation of DNA considerably accelerates DNA methylation. The highly processive mechanism of E. coli dam could explain why small amounts of E. coli dam are able to maintain the methylation state of dam sites during DNA replication. Furthermore, our data support the general rule that solitary DNA methyltransferase modify DNA processively whereas methyltransferases belonging to a restriction-modification system show a distributive mechanism, because processive methylation of DNA would interfere with the biological function of restriction-modification systems.  相似文献   

9.
We cloned and sequenced the DNA adenine-N(6) methyltransferase gene of the human pathogen Actinobacillus actinomycetemcomitans (M.AacDAM). Restriction digestion shows that the enzyme methylates adenine in the sequence GATC. Expression of the enzyme in a DAM(-) background shows in vivo activity. A PSI-BLAST search revealed that M.AacDAM is most related to M.HindIV, M.EcoDAM, M.StyDAM, and M.SmaII. The ClustalW alignment shows highly conserved regions in the enzyme characteristic for type a MTases. Phylogenetic tree analysis shows a cluster of enzymes recognizing the sequence GATC, within a branch of orphan MTases harboring M.AacDAM. The cloning and sequencing of this first methyltransferase gene described for A. actinomycetemcomitans open the path for studies on the potential regulatory impact of DNA methylation on gene regulation and virulence in this organism.  相似文献   

10.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

11.
12.
DNA methylation and epigenetics   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
Methylation of DNA occurs at the C5 and N4 positions of cytosine and N6 of adenine. The chemistry of methylation is similar among methyltransferases specific for cytosine-N4 and adenine-N6. Moreover these enzymes have similar structures and active sites. Previously it has been demonstrated that the DNA-(adenine-N6)-methyltransferases M.EcoRV, M.EcoRI, E. coli dam and both domains of M.FokI also modify cytosine residues at the N4 position [Jeltsch et al., J. Biol. Chem. 274 (1999), 19538-19544]. Here we show that the cytosine-N4 methyltransferase M.PvuII, which modifies the second cytosine in CAGCTG sequences, also methylates adenine residues in CAGATG/CAGCTG substrates in which the target cytosine is replaced by adenine in one strand of the recognition sequence. Therefore, adenine-N6 and cytosine-N4 methyltransferases have overlapping target base specificities. These results demonstrate that the target base recognition by N-specific DNA methyltransferases is relaxed in many cases. Furthermore, it shows that the catalytic mechanisms of adenine-N6 and cytosine-N4 methyltransferases are very similar.  相似文献   

15.
Two DNA methylase activities of Escherichia coli C, the mec (designates DNA-cytosine-methylase gene, which is also designated dcm) and dam gene products, were physically separated by DEAE-cellulose column chromatography. The sequence and substrate specificity of the two enzymes were studied in vitro. The experiments revealed that both enzymes show their expected sequence specificity under in vitro conditions, methylating symmetrically on both DNA strands. The mec enzyme methylates exclusively the internal cytosine residue of CCATGG sequences, and the dam enzyme methylates adenine residues at GATC sites. Substrate specificity experiments revealed that both enzymes methylate in vitro unmethylated duplex DNA as efficiently as hemimethylated DNA. The results of these experiments suggest that the methylation at a specific site takes place by two independent events. A methyl group in a site on one strand of the DNA does not facilitate the methylation of the same site on the opposite strand. With the dam methylase it was found that the enzyme is incapable of methylating GATC sites located at the ends of DNA molecules.  相似文献   

16.
Chlamydia trachomatis is a Gram-negative eubacterium with a dimorphic developmental cycle and obligate intracellular growth in the eucaryotic host. The Dam transmethylase of Escherichia coli methylates at the N6 position of adenine in the sequence 5'-GATC-3' and the Dcm transmethylase adds methyl groups to the C5 position of the internal cytosines in the sequences 5'-CCWGG-3'. In contrast to E. coli, C. trachomatis DNA appears to have unmethylated Dam sites and only low level Dcm methylation.  相似文献   

17.
The putative product of orf13 from the genome of Haemophilus influenzae HP1 bacteriophage shows homology only to bacteriophage T1 Dam methyltransferase, and a weak similarity to the conserved amino acids sequence motifs characteristic of m6A-methyltransferases. Especially interesting is lack of characteristic motif I responsible for binding of S-adenosylmethionine. Despite this fact, a DNA sequence of HP1 bacteriophage of Haemophilus influenzae encoding methyltransferase activity was cloned and expressed in Escherichia coli using pMPMT4 omega expression vector. The cloned methyltransferase recognizes the sequence 5'-GATC-3' and methylates an adenine residue. The enzyme methylates both double- and single-stranded DNA substrates.  相似文献   

18.
The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.  相似文献   

19.
20.
Activity of the cat gene driven by the cauliflower mosaic virus 35S promoter has been assayed by transfecting petunia protoplasts with the pUC8CaMVCAT plasmid. In vitro methylation of this plasmid with M.HpaII (methylates C in CCGG sites) and M.HhaI (methylates GCGC sites) did not affect bacterial chloramphenicol acetyltransferase (CAT) activity. It should be noted, however, that no HpaII or HhaI sites are present in the promoter sequence. In contrast, in vitro methylation of the plasmid with the spiroplasma methylase M.SssI, which methylates all CpG sites, resulted in complete inhibition of CAT activity. The promoter sequence contains 16 CpG sites and 13 CpNpG sites that are known to be methylation sites in plant DNA. In the light of this fact, and considering the results of the experiments presented here, we conclude that methylation at all CpG sites leaving CpNpG sites unmethylated is sufficient to block gene activity in a plant cell. Methylation of CpNpG sites in plant cells may, therefore, play a role other than gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号