首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Y  Gorry MC  Post JC  Ehrlich GD 《Gene》1999,230(1):69-79
The human fibroblast growth factor receptor (FGFR) genes play important roles in normal vertebrate development. Mutations in the human FGFR2 gene have been associated with many craniosynostotic syndromes and malformations, including Crouzon, Pfeiffer, Apert, Jackson-Weiss, Beare-Stevenson cutis gyrata, and Antley-Bixler syndromes, and Kleeblaatschadel (cloverleaf skull) deformity. The mutations identified to date are concentrated in the previously characterized region of FGFR2 that codes for the extracellular IgIII domain of the receptor protein. The search for mutations in other regions of the gene, however, has been hindered by lack of knowledge of the genomic structure. Using a combination of genomic library screening, long-range PCR, and genomic walking, we have characterized the genomic structure of nearly the entire human FGFR2 gene, including a delineation of the organization and size of all introns and exons and determination of the DNA sequences at the intron/exon boundaries. Comparative analysis of the human FGFR gene family reveals that the genomic organization of the FGFRs is relatively conserved. Moreover, alignment of the amino acid sequences shows that the four corresponding proteins share 46% identity overall, with up to 70% identity between individual pairs of FGFR proteins. However, the FGFR2 gene contains an additional exon not found in other members of the family, and it also has much larger intronic sequences throughout the gene. Remarkable similarities in genomic organization, intron/exon boundaries, and intron sizes are found between the human and mouse FGFR2 genes. Knowledge gained from this study of the human FGFR2 gene structure may prove useful in future screening studies designed to find additional mutations associated with craniosynostotic syndromes, and in understanding the molecular and cell biology of this receptor family.  相似文献   

2.
Many genes for calmodulin-like domain protein kinases (CDPKs) have been identified in plants and Alveolate protists. To study the molecular evolution of the CDPK gene family, we performed a phylogenetic analysis of CDPK genomic sequences. Analysis of introns supports the phylogenetic analysis; CDPK genes with similar intron/exon structure are grouped together on the phylogenetic tree. Conserved introns support a monophyletic origin for plant CDPKs, CDPK-related kinases, and phosphoenolpyruvate carboxylase kinases. Plant CDPKs divide into two major branches. Plant CDPK genes on one branch share common intron positions with protist CDPK genes. The introns shared between protist and plant CDPKs presumably originated before the divergence of plants from Alveolates. Additionally, the calmodulin-like domains of protist CDPKs have intron positions in common with animal and fungal calmodulin genes. These results, together with the presence of a highly conserved phase zero intron located precisely at the beginning of the calmodulin-like domain, suggest that the ancestral CDPK gene could have originated from the fusion of protein kinase and calmodulin genes facilitated by recombination of ancient introns. Received: 11 July 2000 / Accepted: 18 April 2001  相似文献   

3.
Sequences from the 5' end terminal part of 28S ribosomal RNA were obtained and compared for 22 animals belonging to all diploblastic phyla and for a large number of representatives of triploblastic Metazoa and protists. Phylogenetic analyses undertaken using different methods showed deep radiations of phyla such as Ctenophora, Cnidaria and Placozoa but also for groups of Porifera of low taxonomic rank. Short internodes between these radiations suggested an early rapid diversification of diploblasts. A long internal branch preceding the diversification of all triploblasts analyzed could be explained either by a long period with a single ancestor or by the extinction of the earliest triploblastic radiations. Finally some unexpected relationships were revealed among Porifera.  相似文献   

4.
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.  相似文献   

5.
Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula, genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Introns interrupt most of the conserved kinase subdomains I-XI and are found in all three phases (0, 1 and 2). We analyzed in details p38 and JNK genes from human, Caenorhabditis elegans and Drosophila melanogaster and found in most genes introns at the positions identical to those in sponge genes. The exceptions are two p38 genes from D. melanogaster that have lost all introns in the coding sequence. The positions of 11 introns in each of four human p38 genes are fully conserved and ten introns occupy identical positions as the introns in sponge p38 or JNK genes. The same is true for nine, out of ten introns in the human JNK-1 gene. The introns in human p38 and JNK genes are on average more than ten times longer than corresponding introns in sponges. It was proposed that yeast HOG1-like kinases (from i.e. Saccharomyces cerevisiae and Emericella nidulans) and metazoan p38 and JNK kinases are orthologues. p38 and JNK genes were created after the split from fungi by the duplication and diversification of the HOG1-like progenitor gene. Our results further support the common origin of p38 and JNK genes and speak in favor of a very early time of duplication. The ancestral gene contained at least ten introns, which are still present at the very conserved positions in p38 and JNK genes of extant animals. Four of these introns are present at the same positions in the HOG-like gene in the fungus E. nidulans. The others probably entered the ancestral gene after the split of fungi, but before the duplication of the gene and before the creation of the common, urmetazoan progenitor of all multicellular animals. A second gene coding for an immune molecule is described, the allograft inflammatory factor, which likewise showed a highly conserved exon/intron structure in S. domuncula and in human. These data show that the intron/exon borders are highly conserved in genes from sponges to human.  相似文献   

6.
The origin of both mesoderm and muscle are central questions in metazoan evolution. The majority of metazoan phyla are triploblasts, possessing three discrete germ layers. Attention has therefore been focused on two outgroups to triploblasts, Cnidaria and Ctenophora. Modern texts describe these taxa as diploblasts, lacking a mesodermal germ layer. However, some members of Medusozoa, one of two subphyla within Cnidaria, possess tissue independent of either the ectoderm or endoderm referred to as the entocodon. Furthermore, members of both Cnidaria and Ctenophora have been described as possessing striated muscle, a mesodermal derivative. While it is widely accepted that the ancestor of Eumetazoa was diploblastic, homology of the entocodon and mesoderm as well as striated muscle within Eumetazoa has been suggested. This implies a potential triploblastic ancestor of Eumetazoa possessing striated muscle. In the following review, I examine the evidence for homology of both muscle and mesoderm. Current data support a diploblastic ancestor of cnidarians, ctenophores, and triploblasts lacking striated muscle.  相似文献   

7.
It has been suggested that the intron/exon structure of a gene corresponds to its evolutionary history. Accordingly, early in evolution DNA segments encoding short functional polypeptides may have been rearranged (exon-shuffling) to create full-length genes and RNA splicing may have been developed to remove intervening sequences (introns) in order to preserve translational reading frames. A conflicting viewpoint would be that introns were randomly inserted into previously uninterrupted genes after their initial evolutionary development. If so, the sites of introns would be unlikely to consistently reflect the domain structure of the protein. To address this question, the intron/exon structure of the gene encoding human alcohol dehydrogenase (ADH) was determined and compared to the gene structures for other ADHs and related proteins, all of which possess nucleotide-binding domains. Our results indicate that the introns in the nucleotide-binding domains of all the genes examined do indeed fall at positions which separate the short functional polypeptides (i.e. beta strands) which are believed to comprise this domain. We argue that our data is most easily explained by the hypothesis that introns were present in an ancestral nucleotide-binding domain which was later rearranged by exon-shuffling to form the various dehydrogenases and kinases which utilize such a domain.  相似文献   

8.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

9.
Pax genes play key regulatory roles in embryonic and sensory organ development in metazoans but their evolution and ancestral functions remain widely unresolved. We have isolated a Pax gene from Placozoa, beside Porifera the only metazoan phylum that completely lacks nerve and sensory cells or organs. These simplest known metazoans also lack any kind of symmetry, organs, extracellular matrix, basal lamina, muscle cells, and main body axis. The isolated Pax gene from Trichoplax adhaerens harbors a paired domain, an octapeptide, and a full-length homeodomain. It displays structural features not only of PaxB and Pax2/5/8-like genes but also of PaxC and Pax6 genes. Conserved splice sites between Placozoa, Cnidaria, and triploblasts, mark the ancient origin of intron structures. Phylogenetic analyses demonstrate that the Trichoplax PaxB gene, TriPaxB, is basal not only to all other known PaxB genes but also to PaxA and PaxC genes and their relatives in triploblasts (namely Pax2/5/8, Pax4/6, and Poxneuro). TriPaxB is expressed in distinct cell patches near the outer edge of the animal body, where undifferentiated and possibly multipotent cells are found. This expression pattern indicates a developmental role in cell-type specification and/or differentiation, probably in specifying-determining fiber cells, which are regarded as proto-neural/muscle cells in Trichoplax. While PaxB, Pax2/5/8, and Pax6 genes have been linked to nerve cell and sensory system/organ development in virtually all animals investigated so far, our study suggests that Pax genes predate the origin of nerve and sensory cells.  相似文献   

10.
The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and "extended Hox" genes and the presence of a single ancestral "ProtoHox" gene.  相似文献   

11.
Identification of a new fibroblast growth factor receptor, FGFR5.   总被引:9,自引:0,他引:9  
  相似文献   

12.
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.  相似文献   

13.
Receptor tyrosine kinases with five, seven, and three Ig-like domains in their extracellular region are grouped in subclasses IIIa, IIIb, and IIIc, respectively. Here, we describe the genomic organization of the extracellular coding region of the human FGFR4 (IIIc) and FLT4 (IIIb) genes and compare it to that of the human FGFR1(IIIc), KIT, and FMS (IIIa). The results show that while genes belonging to the same subclass have an identical exon/intron structure in their extracellular coding region—as they do in their intracellular coding region—genes of related subclasses only have a similar exon/intron structure. These results strongly support the hypothesis that the genes of the three subclasses evolved from a common ancestor by duplications involving entire genes, already in pieces. Hypotheses on the origin of introns and on the difference in the number of extracellular Ig-like domains in the three gene subclasses are discussed. Received: 19 August 1996 / Accepted: 2 January 1997  相似文献   

14.
15.
Unusual two-domain arginine kinases (AKs) arose independently at least two times during molecular evolution of phosphagen kinases: AKs from the primitive sea anemone Anthopleura japonicus and from the clam Pseudocardium sachalinensis. To elucidate its unusual evolution, the structures of Anthopleura and Pseudocardium AK genes have been determined. The Anthopleura gene consisted of 4 exons and 3 introns: two domains are linked by a bridge intron, and each domain contains one intron in different positions. On the other hand, the Pseudocardium gene consisted of 10 exons and 9 introns: two domains are also linked by a bridge intron, and domains 1 and 2 contains 3 and 5 introns, respectively, of which 3 introns are located in exactly same positions. Since the two domains of Pseudocardium AK are estimated to have diverged about 290 million years ago, the 3 introns have been conserved at least for this long. Comparison of intron positions in Anthopleura, Pseudocardium and C. elegans AK genes indicates that there is no intron conserved through the three AK lineages, in sharp contrast to relatively conservative intron positions in creatine kinase (CK) gene family.  相似文献   

16.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5''-most and 3''-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

17.
Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, including growth, differentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with developmental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.  相似文献   

18.
Although spliceosomal introns are present in all characterized eukaryotes, intron numbers vary dramatically, from only a handful in the entire genomes of some species to nearly 10 introns per gene on average in vertebrates. For all previously studied intron-rich species, significant fractions of intron positions are shared with other widely diverged eukaryotes, indicating that 1) large numbers of the introns date to much earlier stages of eukaryotic evolution and 2) these lineages have not passed through a very intron-poor stage since early eukaryotic evolution. By the same token, among species that have lost nearly all of their ancestral introns, no species is known to harbor large numbers of more recently gained introns. These observations are consistent with the notion that intron-dense genomes have arisen only once over the course of eukaryotic evolution. Here, we report an exception to this pattern, in the intron-rich diatom Thalassiosira pseudonana. Only 8.1% of studied T. pseudonana intron positions are conserved with any of a variety of divergent eukaryotic species. This implies that T. pseudonana has both 1) lost nearly all of the numerous introns present in the diatom-apicomplexan ancestor and 2) gained a large number of new introns since that time. In addition, that so few apparently inserted T. pseudonana introns match the positions of introns in other species implies that insertion of multiple introns into homologous genic sites in eukaryotic evolution is less common than previously estimated. These results suggest the possibility that intron-rich genomes may have arisen multiple times in evolution. These results also provide evidence that multiple intron insertion into the same site is rare, further supporting the notion that early eukaryotic ancestors were very intron rich.  相似文献   

19.
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.  相似文献   

20.
BACKGROUND: Fibroblastic growth factors (FGFs) are a family of cytokines involved in regulation of cell growth, differentiation and chemotaxis in a variety of tissue types. High-affinity FGF receptors (FGFRs) are transmembrane proteins that consist of three extracellular immunoglobulin-like domains, a transmembrane helix and an intracellular protein tyrosine kinase signalling domain. FGFRs are activated through ligand-dependent dimerization that allows trans-autophosphorylation of the tyrosine kinase domains. Heparin or heparin-like molecules, such as heparan sulphate proteoglycans, bind to both FGFs and FGFRs and are required for FGF signal transduction. At present no structure of the ternary complex for FGFR, FGF and heparin exists. RESULTS: We have used the type-1 interleukin-1 receptor-interleukin-1 beta complex crystal structure, in which both the ligand and the receptor are homologous to those of the FGF-FGFR pair, to identify potential interactions in the FGFR-heparin-FGF ternary complex. A key feature of the modelled complex is the 'electrostatic sandwich' that is formed between the positively charged surfaces of FGF and the receptor, with the negatively charged heparin captured in between. The ternary complex places limits on the range of likely modes of receptor dimerization: one of five different dimeric receptor complexes built from the ternary complex correlates best with the experimental data. CONCLUSIONS: The ternary complex of FGFR, FGF and heparin, derived on the basis of the homologous interleukin-1 receptor complex, is in agreement with much of the published experimental data, as is the dimeric receptor complex (FGFR-heparin-FGF)2. This work suggests that the FGF interactions seen in crystal structures, which have previously been used to predict the mode of FGF dimerization, might not be relevant to the biologically active dimeric FGFR-heparin-FGF complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号