首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of DNA methylation and sequence variants that are methylation quantitative trait loci (mQTLs) may influence susceptibility to diseases such as alcohol dependence (AD). We used genome-wide genotype data from 268 African Americans (AAs: 129 AD cases and 139 controls) and 143 European Americans (EAs: 129 AD cases and 14 controls) to identify mQTLs that were associated with promoter CpGs in 82 AD risk genes. 282 significant mQTL–CpG pairs (9.9 × 10?100 ≤ P nominal ≤ 7.7 × 10?8) in AAs and 313 significant mQTL–CpG pairs (2.7 × 10?53 ≤ P nominal ≤ 9.9 × 10?8) in EAs were identified [i.e., mQTL–CpG associations survived multiple-testing correction, q values (false discovery rate) ≤ 0.05]. The most significant mQTL was rs1800759, which was strongly associated with CpG cg12011299 in both AAs (P nominal = 9.9 × 10?100; q = 6.7 × 10?91) and EAs (P nominal = 2.7 × 10?53; q = 1.4 × 10?44). Rs1800759 (previously known to be associated to AD) and CpG cg12011299 (distance: 37 bp) are both located in alcohol dehydrogenase (ADH) 4 gene (ADH4) promoter region. In general, the strength of association between mQTLs and CpGs was inversely correlated with the distance between them. Association was also influenced by race and AD. Additionally, 48.3 % of the mQTLs identified in AAs and 65.6 % of the mQTLs identified in EAs were predicted to be expression QTLs. Three mQTLs (rs2173201, rs4147542, and rs4147541 in ADH1B-AHD1C gene cluster region) found in AAs were previously identified by our genome-wide association studies as being significantly associated with AD in AAs. Thus, DNA methylation, which can be influenced by sequence variants and is implicated in gene expression regulation, appears to at least partially underlie the association of genetic variation with AD.  相似文献   

2.
Genetic heterogeneity could reduce the power of linkage analysis to detect risk loci for complex traits such as alcohol dependence (AD). Previously, we performed a genomewide linkage analysis for AD in African-Americans (AAs) (Biol Psychiatry 65:111–115, 2009). The power of that linkage analysis could have been reduced by the presence of genetic heterogeneity owing to differences in admixture among AA families. We hypothesized that by examining a study sample whose genetic ancestry was more homogeneous, we could increase the power to detect linkage. To test this hypothesis, we performed ordered subset linkage analysis in 384 AA families using admixture proportion as a covariate to identify a more homogeneous subset of families and determine whether there is increased evidence for linkage with AD. Statistically significant increases in lod scores in subsets relative to the overall sample were identified on chromosomes 4 (P = 0.0001), 12 (P = 0.021), 15 (P = 0.026) and 22 (P = 0.0069). In a subset of 44 families with African ancestry proportions ranging from 0.858 to 0.996, we observed a genomewide significant linkage at 180 cM on chromosome 4 (lod = 4.24, pointwise P < 0.00001, empirical genomewide P = 0.008). A promising candidate gene located there, GLRA3, which encodes a subunit of the glycine neurotransmitter receptor. Our results demonstrate that admixture proportion can be used as a covariate to reduce genetic heterogeneity and enhance the detection of linkage for AD in an admixed population such as AAs. This approach could be applied to any linkage analysis for complex traits conducted in an admixed population.  相似文献   

3.

Background

Risk of substance dependence (SD) and obesity has been linked to the function of melanocortin peptides encoded by the proopiomelanocortin gene (POMC).

Methods and Results

POMC exons were Sanger sequenced in 280 African Americans (AAs) and 308 European Americans (EAs). Among them, 311 (167 AAs and 114 EAs) were affected with substance (alcohol, cocaine, opioid and/or marijuana) dependence and 277 (113 AAs and164 EAs) were screened controls. We identified 23 variants, including two common polymorphisms (rs10654394 and rs1042571) and 21 rare variants; 12 of which were novel. We used logistic regression to analyze the association between the two common variants and SD or body mass index (BMI), with sex, age, and ancestry proportion as covariates. The common variant rs1042571 in the 3′UTR was significantly associated with BMI in EAs (Overweight: P adj = 0.005; Obese: P adj = 0.018; Overweight+Obese: P adj = 0.002) but not in AAs. The common variant, rs10654394, was not associated with BMI and neither common variant was associated with SD in either population. To evaluate the association between the rare variants and SD or BMI, we collapsed rare variants and tested their prevalence using Fisher’s exact test. In AAs, rare variants were nominally associated with SD overall and with specific SD traits (SD: P FET,1df = 0.026; alcohol dependence: P FET,1df = 0.027; cocaine dependence: P FET,1df = 0.007; marijuana dependence: P FET,1df = 0.050) (the P-value from cocaine dependence analysis survived Bonferroni correction). There was no such effect in EAs. Although the frequency of the rare variants did not differ significantly between the normal-weight group and the overweight or obese group in either population, certain rare exonic variants occurred only in overweight or obese subjects without SD.

Conclusion

These findings suggest that POMC exonic variants may influence risk for both SD and elevated BMI, in a population-specific manner. However, common and rare variants in this gene may exert different effects on these two phenotypes.  相似文献   

4.
Zuo L  Zhang CK  Wang F  Li CS  Zhao H  Lu L  Zhang XY  Lu L  Zhang H  Zhang F  Krystal JH  Luo X 《PloS one》2011,6(11):e26726
Several genome-wide association studies (GWASs) reported tens of risk genes for alcohol dependence, but most of them have not been replicated or confirmed by functional studies. The present study used a GWAS to search for novel, functional and replicable risk gene regions for alcohol dependence. Associations of all top-ranked SNPs identified in a discovery sample of 681 African-American (AA) cases with alcohol dependence and 508 AA controls were retested in a primary replication sample of 1,409 European-American (EA) cases and 1,518 EA controls. The replicable associations were then subjected to secondary replication in a sample of 6,438 Australian family subjects. A functional expression quantitative trait locus (eQTL) analysis of these replicable risk SNPs was followed-up in order to explore their cis-acting regulatory effects on gene expression. We found that within a 90 Mb region around PHF3-PTP4A1 locus in AAs, a linkage disequilibrium (LD) block in PHF3-PTP4A1 formed the only peak associated with alcohol dependence at p<10−4. Within this block, 30 SNPs associated with alcohol dependence in AAs (1.6×10−5≤p≤0.050) were replicated in EAs (1.3×10−3≤p≤0.038), and 18 of them were also replicated in Australians (1.8×10−3≤p≤0.048). Most of these risk SNPs had strong cis-acting regulatory effects on PHF3-PTP4A1 mRNA expression across three HapMap samples. The distributions of −log(p) values for association and functional signals throughout this LD block were highly consistent across AAs, EAs, Australians and three HapMap samples. We conclude that the PHF3-PTP4A1 region appears to harbor a causal locus for alcohol dependence, and proteins encoded by PHF3 and/or PTP4A1 might play a functional role in the disorder.  相似文献   

5.
6.
Keloids are benign dermal tumors that occur ~20 times more often in African versus Caucasian descent individuals. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and the large differences in risk among populations. Yet, no well-established genetic risk factors for keloids have been identified. In this study, we conducted admixture mapping and whole-exome association using 478 African Americans (AAs) samples (122 cases, 356 controls) with exome genotyping data to identify regions where local ancestry associated with keloid risk. Logistic regression was used to evaluate associations under admixture peaks. A significant mapping peak was observed on chr15q21.2–22.3. This peak included NEDD4, a gene previously implicated in a keloid genome-wide association study (GWAS) of Japanese individuals later validated in a Chinese cohort. While we observed modest evidence for association with NEDD4, a more significant association was observed at (myosin 1E) MYO1E. A genome scan not including the 15q21-22 region also identified associations at MYO7A (rs35641839, odds ratio [OR] = 4.71, 95 % confidence interval [CI] 2.38–9.32, p = 8.34 × 10?6) at 11q13.5. The identification of SNPs in two myosin genes strongly associated with keloid formation suggests that an altered cytoskeleton contributes to the enhanced migratory and invasive properties of keloid fibroblasts. Our findings support the admixture mapping approach for the study of keloid risk, and indicate potentially common genetic elements on chr15q21.2–22.3 in causation of keloids in AAs, Japanese, and Chinese populations.  相似文献   

7.
Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome‐wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome‐wide SNPs collectively account for risk of AD in two US populations, African‐Americans (AAs) and European‐Americans (EAs). Analyzing GWAS data for two independent case–control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P = 1.64 × 10–3 and 2.08 × 10–4 for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population specific. Simulations show that disease models based on rare and uncommon causal variants (MAF < 0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs.  相似文献   

8.
Vitamin D deficiency is more common among African Americans (AAs) than among European Americans (EAs), and epidemiologic evidence links vitamin D status to many health outcomes. Two genome-wide association studies (GWAS) in European populations identified vitamin D pathway gene single-nucleotide polymorphisms (SNPs) associated with serum vitamin D [25(OH)D] levels, but a few of these SNPs have been replicated in AAs. Here, we investigated the associations of 39 SNPs in vitamin D pathway genes, including 19 GWAS-identified SNPs, with serum 25(OH)D concentrations in 652 AAs and 405 EAs. Linear and logistic regression analyses were performed adjusting for relevant environmental and biological factors. The pattern of SNP associations was distinct between AAs and EAs. In AAs, six GWAS-identified SNPs in GC, CYP2R1, and DHCR7/NADSYN1 were replicated, while nine GWAS SNPs in GC and CYP2R1 were replicated in EAs. A CYP2R1 SNP, rs12794714, exhibited the strongest signal of association in AAs. In EAs, however, a different CYP2R1 SNP, rs1993116, was the most strongly associated. Our models, which take into account genetic and environmental variables, accounted for 20 and 28 % of the variance in serum vitamin D levels in AAs and EAs, respectively.  相似文献   

9.
Alcohol dependence (AD) is a complex psychiatric disorder that affects about 12.5 % of US adults. Genetic factors play a major role in the development of AD. We conducted a genomewide association study in 2,875 African-Americans including 1,719 AD cases and 1,156 controls. We used the Illumina Omni 1-Quad microarray, which yielded 769,498 single-nucleotide polymorphisms (SNPs) after quality control. To explore the genetic architecture of AD, we estimated the variance that could be explained by all SNPs and subsets of SNPs using two different approaches to genome partitioning. We found that 23.9 % (s.e. 9.3 %) of the phenotypic variance could be explained by using all of the common SNPs on the array. We also found a significant linear relationship between the proportion of the top SNPs used and the phenotypic variance explained by them. Based on genome partitioning of common variants, we also observed a significant linear relationship between the variance explained by a chromosome and its length. Chromosome 4, known to contain several AD risk genes, accounted for excess risk in proportion to its length. By functional partitioning, we found that the genetic variants within 20 kb of genes explained 17.5 % (s.e. 11.4 %) of the phenotypic variance. Our findings are consistent with the generally accepted view that AD is a highly polygenic trait, i.e., the genetic risk in AD appears to be conferred by multiple variants, each of which may have a small or moderate effect.  相似文献   

10.
African Americans (AAs) tend to have lower total adiponectin levels compared to European Americans (EA); however, it is not known whether race affects adiponectin multimer distribution and their relationships to metabolic traits. We measured total adiponectin, high molecular weight (HMW), low molecular weight (LMW) (i.e., hexamer), and trimer adiponectin in 132 normoglycemic premenopausal women (75 AAs, 57 EAs), together with measures of total and abdominal fat, plasma lipids, insulin sensitivity (S(i)), and genetic admixture estimates. We found that lower total adiponectin in AAs was explained by reduced LMW, and trimer forms because levels of HMW did not differ between races. In EAs, HMW was highly correlated with multiple metabolic syndrome traits. In contrast, the LMW and trimer forms were most highly correlated with metabolic traits in AAs, including abdominal adiposity, lipids, and S(i). At similar levels of visceral adiposity, AAs exhibited significantly lower LMW adiponectin than EAs. Similarly, at comparable levels of HMW and LMW adiponectin, AAs were more insulin resistant than their EA counterparts. In conclusion, (i) serum adiponectin is lower in AAs predominantly as a result of reduced concentrations of LMW and trimers multimeric forms; (ii) LMW and trimer, not HMW, are most broadly correlated with metabolic traits in AAs. Thus, HMW adiponectin may exert less bioactivity in explaining the metabolic syndrome trait cluster in populations of predominant African genetic background.  相似文献   

11.
Positive genetic associations of rs6313 (102T/C at exon 1) and rs6311 (?1438A/G) on the 5-hydroxytryptamine (serotonin) 2A receptor gene (HTR2A or 5-HT2A) were reported for alcohol and drug abuse; however, other association studies failed to produce consistent results supporting the susceptibility of the two single nucleotide polymorphisms (SNPs). To clarify the associations of the HTR2A gene with substance use disorders, we performed a meta-analysis based on the genotypes from the available candidate gene association studies of the two SNPs with alcohol and drug abuse from multiple populations. Evidence of association was found for HTR2A rs6313 in all the combined studies (e.g., allelic P = 0.0048 and OR 0.86, 95 % CI 0.77–0.95) and also in the combined studies of alcohol dependence (abuse) (e.g., allelic P = 0.0001 and OR 0.71, 95 % CI 0.59–0.85). The same association trend was also observed in the Study of Addiction: Genetics and Environment datasets. The meta-analysis supports a contribution of the HTR2A gene to the susceptibility to substance use disorders, particularly alcohol dependence.  相似文献   

12.
13.
Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7ADH1CADH1BADH1AADH6ADH4ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatric disorders. In the present study, we comprehensively examined the associations between common ADH variants [minor allele frequency (MAF) >0.05] and 11 neuropsychiatric and neurological disorders. A total of 50,063 subjects in 25 independent cohorts were analyzed. The entire ADH gene cluster was imputed across these 25 cohorts using the same reference panels. Association analyses were conducted, adjusting for multiple comparisons. We found 28 and 15 single nucleotide polymorphisms (SNPs), respectively, that were significantly associated with schizophrenia in African-Americans and autism in European-Americans after correction by false discovery rate (FDR) (q < 0.05); and 19 and 6 SNPs, respectively, that were significantly associated with these two disorders after region-wide correction by SNPSpD (8.9 × 10?5 ≤  ≤ 0.0003 and 2.4 × 10?5 ≤ p ≤ 0.0003, respectively). No variants were significantly associated with the other nine neuropsychiatric disorders, including alcohol dependence. We concluded that common ADH variants conferred risk for both schizophrenia in African-Americans and autism in European-Americans.  相似文献   

14.
Alcohol dependence (AD) is a common neuropsychiatric disorder with high heritability. A number of studies have analyzed the association between the Taq1A polymorphism (located in the gene cluster ANKK1/DRD2) and AD. In the present study, we conducted a large-scale meta-analysis to confirm the association between the Taq1A polymorphism and the risk for AD in over 18,000 subjects included in 61 case–control studies that were published up to August 2012. Our meta-analysis demonstrated both allelic and genotypic association between the Taq1A polymorphism and AD susceptibility [allelic: P(Z) = 1.1 × 10?5, OR = 1.19; genotypic: P(Z) = 3.2 × 10?5, OR = 1.24]. The association remained significant after adjustment for publication bias using the trim and fill method. Sensitivity analysis showed that the effect size of the Taq1A polymorphism on AD risk was moderate and not influenced by any individual study. The pooled odds ratio from published studies decreased with the year of publication, but stabilized after the year 2001. Subgroup analysis indicated that publication bias could be influenced by racial ancestry. In summary, this large-scale meta-analysis confirmed the association between the Taq1A polymorphism and AD. Future studies are required to investigate the functional significance of the ANKK1/DRD2 Taq1A polymorphism in AD.  相似文献   

15.
Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.  相似文献   

16.
Genetic factors are believed to account for 30-50% of the risk for cocaine and heroin addiction. Dynorphin peptides, derived from the prodynorphin (PDYN) precursor, bind to opioid receptors, preferentially the kappa-opioid receptor, and may mediate the aversive effects of drugs of abuse. Dynorphin peptides produce place aversion in animals and produce dysphoria in humans. Cocaine and heroin have both been shown to increase expression of PDYN in brain regions relevant for drug reward and use. Polymorphisms in PDYN are therefore hypothesized to increase risk for addiction to drugs of abuse. In this study, 3 polymorphisms in PDYN (rs1022563, rs910080 and rs1997794) were genotyped in opioid-addicted [248 African Americans (AAs) and 1040 European Americans (EAs)], cocaine-addicted (1248 AAs and 336 EAs) and control individuals (674 AAs and 656 EAs). Sex-specific analyses were also performed as a previous study identified PDYN polymorphisms to be more significantly associated with female opioid addicts. We found rs1022563 to be significantly associated with opioid addiction in EAs [P = 0.03, odds ratio (OR) = 1.31; false discovery rate (FDR) corrected q-value]; however, when we performed female-specific association analyses, the OR increased from 1.31 to 1.51. Increased ORs were observed for rs910080 and rs199774 in female opioid addicts also in EAs. No statistically significant associations were observed with cocaine or opioid addiction in AAs. These data show that polymorphisms in PDYN are associated with opioid addiction in EAs and provide further evidence that these risk variants may be more relevant in females.  相似文献   

17.
Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5–CHRNA3–CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer and chronic obstructive pulmonary disease. We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect the risk of nicotine dependence in a new sample of African Americans (AAs) (N = 710). We also analyzed this AA sample together with a European American (EA) sample (N = 2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine‐dependent smokers and controls are non‐dependent smokers. Variants in or near CHRND–CHRNG, CHRNA7 and CHRNA10 show modest association with nicotine dependence risk in the AA sample. In addition, CHRNA4, CHRNB3–CHRNA6 and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor single nucleotide polymorphisms (SNPs) that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni‐corrected significance in the AA sample alone. The trait variation explained by three key associated SNPs in CHRNA5–CHRNA3–CHRNB4 is 1.9% in EAs and also 1.9% in AAs; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes. Multiple nicotinic receptor subunit genes outside chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations.  相似文献   

18.
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (>50 %) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N = 2,322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case–control sample (N = 2,593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1 × 10?6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1 × 10?7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2 × 10?7) and PLCL1 genes (p = 4.1 × 10?6) with maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p ≤ 10?4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2 × 10?3, 3 × 10?6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance.  相似文献   

19.
Alcohol dependence (AD) is a multifactorial and polygenic disorder involving complex gene-to-gene and gene-to-environment interactions. Several genome-wide association studies have reported numerous risk factors for AD, but replication results following these studies have been controversial. To identify new candidate genes, the present study used GWAS and replication studies in a Korean cohort with AD. Genome-wide association analysis revealed that two chromosome regions on Chr. 4q22-q23 (ADH gene cluster, including ADH5, ADH4, ADH6, ADH1A, ADH1B, and ADH7) and Chr. 12q24 (ALDH2) showed multiple association signals for the risk of AD. To investigate detailed genetic effects of these ADH genes on AD, a follow-up study of the ADH gene cluster on 4q22-q23 was performed. A total of 90 SNPs, including ADH1B rs1229984 (H47R), were genotyped in an additional 975 Korean subjects. In case–control analysis, ADH1B rs1229984 (H47R) showed the most significant association with the risk of AD (p = 2.63 × 10?21, OR = 2.35). Moreover, subsequent conditional analyses revealed that all positive associations of other ADH genes in the cluster disappeared, which suggested that ADH1B rs1229984 (H47R) might be the sole functional genetic marker across the ADH gene cluster. Our findings could provide additional information on the ADH gene cluster regarding the risk of AD, as well as a new and important insight into the genetic factors associated with AD.  相似文献   

20.
Methylation and expression profile of CpG islands were examined in the promoters of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes. These are well known to be involved in the pathophysiology of psychiatric disorders such as schizophrenia. Genomic DNA was extracted from peripheral blood of 80 patients with schizophrenia and 71 healthy controls. Methylation pattern was studied by Methylation-Specific PCR. RNA expression analysis was done on extracted RNA from blood samples from patients suffering from schizophrenia (n?=?17) and healthy controls (n?=?17). Frequency of the BDNF gene methylation was highlighted as a statistically significant relationship between cases and controls regarding decreased risk of disease in comparison to unmethylated patterns (OR?=?0.24; 95?% CI?=?1.11–0.50; P?=?0.00007). For the DAT1 gene, this relationship was insignificant in 61 cases (76.25?%) and 52 controls (73.23?%) (OR?=?1.17; 95?% CI?=?0.53–2.61). Estimates of relative gene expression revealed a statistically significant association of the BDNF gene between schizophrenic patients and healthy controls (Mean?±?SD: 13.3920?±?15.19 and 0.437?±?0.328, P?=?0.0001) respectively; however, it was not significant for the DAT1 gene. This first hand evidence, regarding BDNF and DAT1 gene methylation and their expression profile with risk of schizophrenia, indicated a significant function for the BDNF gene in the development of schizophrenia. However, further populations with large sample sizes need to be studied to verify the exact role of BDNF in mental disorders such as schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号