首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
Injury to the axons of facial motoneurons stimulates increases in the synthesis of actin, tubulins, and GAP-43, and decreases in the synthesis of neurofilament proteins: mRNA levels change correspondingly. In contrast to this robust response of peripheral neurons to axotomy, injured central nervous system neurons show either an attenuated response that is subsequently aborted (rubrospinal neurons) or overall decreases in cytoskeletal protein mRNA expression (corticospinal and retinal ganglion neurons). There is evidence that these changes in synthesis are regulated by a variety of factors, including loss of endoneurially or target-derived trophic factors, positive signals arising from the site of injury, changes in the intraaxonal turnover of proteins, and substitution of target-derived trophic support by factors produced by glial cells. It is concluded that there is, as yet, no coherent explanation for the upregulation or downregulation of any of the cytoskeletal proteins following axotomy or during regeneration. In considering the relevance of these changes in cytoskeletal protein synthesis to regeneration, it is emphasized that they are unlikely to be involved in the initial outgrowth of the injured axons, both because transit times between cell body and injury site are too long, and because sprouting can occur in isolated axons. Injuryinduced acceleration of the axonal transport of tubulin and actin in the proximal axon is likely to be more important in providing the cytoskeletal protein required for initial axonal outgrowth. Subsequently, the increased synthesis and transport velocity for actin and tubulin increase the delivery of these proteins to support the increased volume of the maturing regenerating axons. Reduction in neurofilament synthesis and changes in neurofilament phosphorylation may permit the increased transport velocity of the other cytoskeletal proteins. There is little direct evidence that alterations in cytoskeletal protein synthesis are necessary for successful regeneration, nor are they sufficient in the absence of a supportive environment. Nevertheless, the correlation that exists between a robust cell body response and successful regeneration suggests that an understanding of the regulation of cytoskeletal protein synthesis following axon injury must be a part of any successful strategy to improve the regenerative capacity of the central nervous system.  相似文献   

2.
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.  相似文献   

3.
Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin‐dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria‐dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl‐l ‐carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

4.
A fundamental issue in central nervous system development regards the effect of target tissue on the differentiation of innervating neurons. We address this issue by characterizing the role the retinal ganglion cell target, i.e., the optic tectum, plays in regulating expression of tubulin and nicotinic acetylcholine receptor genes in regenerating retinal ganglion cells. Tubulins are involved in axonal growth, whereas nicotinic acetylcholine receptors mediate communication across synapses. Retinal ganglion cell axons were induced to regenerate by crushing the optic nerve. Following crush, there was a rapid increase in alpha-tubulin RNAs (3 days), which preceded the increase in nicotinic acetylcholine receptor RNAs (10-15 days). Both classes of RNAs approached control levels by the time retinotectal synapses and functional recovery were restored (4-6 weeks). If the optic nerve was repeatedly crushed or its target ablated, tubulin RNAs remained elevated, and the increase in receptor RNAs that would otherwise be seen 2 weeks after a single nerve crush did not occur. The interaction of retinal ganglion cell axons with their targets in the optic tectum appears, then, to exert a suppressive effect on the RNA encoding a cytoskeletal protein, tubulin, and an inductive effect on RNAs encoding nicotinic acetylcholine receptors involved in synaptic communication.  相似文献   

5.
Microtubules (MTs) play an important role in elaboration and maintenance of axonal and dendritic processes. MT dynamics are modulated by MT-associated proteins (MAPs), whose activities are regulated by protein phosphorylation. We found that a member of the c-Jun NH(2)-terminal protein kinase (JNK) subgroup of MAP kinases, JNK1, is involved in regulation of MT dynamics in neuronal cells. Jnk1(-/-) mice exhibit disrupted anterior commissure tract formation and a progressive loss of MTs within axons and dendrites. MAP2 and MAP1B polypeptides are hypophosphorylated in Jnk1(-/-) brains, resulting in compromised ability to bind MTs and promote their assembly. These results suggest that JNK1 is required for maintaining the cytoskeletal integrity of neuronal cells and is a critical regulator of MAP activity and MT assembly.  相似文献   

6.
Jafari  S. S  Maxwell  W. L  Neilson  M  Graham  D. I 《Brain Cell Biology》1997,26(4):201-221
In animal models of human diffuse axonal injury, axonal swellings leading to secondary axotomy occur between 2 and 6 h after injury. But, analysis of cytoskeletal changes associated with secondary axotomy has not been undertaken. We have carried out a quantitative analysis of cytoskeletal changes in a model of diffuse axonal injury 4 h after stretch-injury to adult guinea-pig optic nerves. The major site of axonal damage was the middle portion of the nerve. There was a statistically significant increase in the proportion of small axons with a diameter of 0.5 μm and smaller in which there was compaction of neurofilaments. Axons with a diameter greater than 2.0 μm demonstrated an increased spacing between cytoskeletal elements throughout the length of the nerve. However, in the middle segment of the nerve these larger axons demonstrated two different types of response. Either, where periaxonal spaces occurred, there was a reduction in axonal calibre, compaction of neurofilaments but no change in their number, and a loss of microtubules. Or, where intramyelinic spaces occurred there was an increased spacing between neurofilaments and microtubules with a significant loss in the number of both. Longitudinal sections showed foci of compaction of neurofilaments interspersed between regions where axonal structure was apparently normal. Neurofilament compaction was correlated with disruption of the axolemma at these foci present some hours after injury. We suggest that the time course of these axonal cytoskeletal changes after stretch-injury to central axons is shorter than those changes documented to occur during Wallerian degeneration.  相似文献   

7.
NCS-1 (neuronal calcium sensor) is a recently characterized member of a highly conserved neuron-specific family of calcium-binding proteins, which also includes frequenin and recoverin. The cellular and subcellular distributions of NCS-1 in the rat nervous system were investigated using light- and electron-microscopic immunohistochemistry. NCS-1 immunoreactivity was localized to neuronal cell bodies and axons throughout the brain and spinal cord but not to glial cells. The most intense labeling was observed in myelinated axons, the axonal ramifications of the basket cell in the cerebellar cortex, and large neurons in the brainstem and pons. These same structures were also characterized by heavy labeling for neurofilament protein, as determined by double-labeling experiments. Most axon terminals were unlabeled or only lightly labeled. The most remarkable subcellular staining occurred in the perikarya where intense labeling was associated with the membranes of the trans saccules of the Golgi apparatus. The widespread distribution of NCS-1 indicates that it may be active in a variety of calcium-dependent neuronal functions, whereas the specific subcellular localization to the Golgi apparatus and neurofilament-rich structures suggests a specialized role in calcium regulated protein trafficking and cytoskeletal interactions.  相似文献   

8.
9.
The localization of synapsin I, a synaptic vesicle-associated protein, was investigated immunocytochemically in normal nerve fibers and regenerating axonal sprouts following crush-injuries to the rat sciatic nerve. In normal myelinated axons, weak synapsin I immunoreactivity was found in the axoplasmic/smooth endoplasmic domains, but not in the cytoskeletal domains comprising neurofilaments and microtubules. In non-myelinated axons without dense cytoskeletal structures, moderate immunoreactivity was distributed diffusely throughout the axoplasm. In the crush-injured nerves, intense synapsin I immunoreactivity was demonstrated by light microscopy in early regenerating sprouts emerging from nodes of Ranvier. These nodal sprouts subsequently elongated as regenerating axons through the space between the basal lamina and the myelin sheath (or Schwann cell plasma membrane). Intense synapsin I immunoreactivity was also found in the growth cones of such long regenerating axons. Electron microscopy revealed that synapsin I immunoreactivity was associated mainly with vesicular organelles in the nodal sprouts and growth cones of regenerating axons. Long regenerating axons exhibited no synapsin I immunoreactivity in the shaft, which contained an abundance of neurofilaments. However, vesicle accumulations remaining in the periphery of the shaft still exhibited intense synapsin I immunoreactivity. Thus, it can be concluded that synapsin I is localized at especially high density in the domains comprising vesicular organelles, which are characteristic of early nodal sprouts, as well as in growth cones of regenerating axons. These findings, together with the proposed functions of synapsin I investigated in other studies, suggest that synapsin I may play important roles in vesicular dynamics including the translocation of vesicles to the plasma membrane in sprouts and growth cones of regenerating axons.  相似文献   

10.
Dystonia musculorum (dt) mice suffer from a severe sensory neuropathy caused by mutations in the gene encoding the cytoskeletal cross-linker protein dystonin/bullous pemphigoid antigen 1 (Bpag1). Loss of function of dystonin/Bpag1 within neurons leads to a loss in the maintenance of cytoskeletal organization and to the development of focal axonal swellings prior to death of the neuron. In the present study, we demonstrate that neurons within the sciatic nerves of dt27J mice undergo axonal degeneration as has been previously reported for the dorsal roots. Furthermore, ultrastructural studies reveal a perturbed organization of the neurofilament and microtubule networks within the axons of sciatic nerves in dt27J mice. The disrupted cytoskeletal organization suggested that axonal transport is affected in dt mice. To address this, we assessed fast axonal transport by measuring the rate of accumulation of acetylcholinesterase (AChE) proximal and distal to a surgically introduced ligature on the sciatic nerves of normal and dt27J mice. Our findings demonstrate that axonal transport of AChE in both orthograde and retrograde directions is markedly affected, and allow us to conclude that axonal transport defects do exist in the sciatic nerves of dt27J mice.  相似文献   

11.
S M de Waegh  V M Lee  S T Brady 《Cell》1992,68(3):451-463
Studies in Trembler and control mice demonstrated that myelinating Schwann cells exert a profound influence on axons. Extensive contacts between myelin and axons have been considered structural. However, demyelination decreases neurofilament phosphorylation, slow axonal transport, and axonal diameter, as well as significantly increasing neurofilament density. In control sciatic nerves with grafted Trembler nerve segments, these changes were spatially restricted: they were confined to axon segments without normal myelination. Adjacent regions of the same axons had normal diameters, neurofilament phosphorylation, cytoskeletal organization, and axonal transport rates. Close intercellular contacts between myelinating Schwann cells and axons modulate a kinase-phosphatase system acting on neurofilaments and possibly other substrates. Myelination by Schwann cells sculpts the axon-altering functional architecture, electrical properties, and neuronal morphologies.  相似文献   

12.
Myelin-associated glycoprotein (MAG) is expressed in periaxonal membranes of myelinating glia where it is believed to function in glia-axon interactions by binding to a component of the axolemma. Experiments involving Western blot overlay and coimmunoprecipitation demonstrated that MAG binds to a phosphorylated neuronal isoform of microtubule-associated protein 1B (MAP1B) expressed in dorsal root ganglion neurons (DRGNs) and axolemma-enriched fractions from myelinated axons of brain, but not to the isoform of MAP1B expressed by glial cells. The expression of some MAP1B as a neuronal plasma membrane glycoprotein (Tanner, S.L., R. Franzen, H. Jaffe, and R.H. Quarles. 2000. J. Neurochem. 75:553-562.), further documented here by its immunostaining without cell permeabilization, is consistent with it being a binding partner for MAG on the axonal surface. Binding sites for a MAG-Fc chimera on DRGNs colocalized with MAP1B on neuronal varicosities, and MAG and MAP1B also colocalized in the periaxonal region of myelinated axons. In addition, expression of the phosphorylated isoform of MAP1B was increased significantly when DRGNs were cocultured with MAG-transfected COS cells. The interaction of MAG with MAP1B is relevant to the known role of MAG in affecting the cytoskeletal structure and stability of myelinated axons.  相似文献   

13.
The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha'-isotubulins were completely soluble in the motor axons. By contrast, alpha' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.  相似文献   

14.
Mutations in Kif1-binding protein/KIAA1279 (KBP) cause the devastating neurological disorder Goldberg-Shprintzen syndrome (GSS) in humans. The cellular function of KBP and the basis of the symptoms of GSS, however, remain unclear. Here, we report the identification and characterization of a zebrafish kbp mutant. We show that kbp is required for axonal outgrowth and maintenance. In vivo time-lapse analysis of neuronal development shows that the speed of early axonal outgrowth is reduced in both the peripheral and central nervous systems in kbp mutants. Ultrastructural studies reveal that kbp mutants have disruption to axonal microtubules during outgrowth. These results together suggest that kbp is an important regulator of the microtubule dynamics that drive the forward propulsion of axons. At later stages, we observe that many affected axons degenerate. Ultrastructural analyses at these stages demonstrate mislocalization of axonal mitochondria and a reduction in axonal number in the peripheral, central and enteric nervous systems. We propose that kbp is an important regulator of axonal development and that axonal cytoskeletal defects underlie the nervous system defects in GSS.  相似文献   

15.
Terman JR  Mao T  Pasterkamp RJ  Yu HH  Kolodkin AL 《Cell》2002,109(7):887-900
Members of the semaphorin family of secreted and transmembrane proteins utilize plexins as neuronal receptors to signal repulsive axon guidance. It remains unknown how plexin proteins are directly linked to the regulation of cytoskeletal dynamics. Here, we show that Drosophila MICAL, a large, multidomain, cytosolic protein expressed in axons, interacts with the neuronal plexin A (PlexA) receptor and is required for Semaphorin 1a (Sema-1a)-PlexA-mediated repulsive axon guidance. In addition to containing several domains known to interact with cytoskeletal components, MICAL has a flavoprotein monooxygenase domain, the integrity of which is required for Sema-1a-PlexA repulsive axon guidance. Vertebrate orthologs of Drosophila MICAL are neuronally expressed and also interact with vertebrate plexins, and monooxygenase inhibitors abrogate semaphorin-mediated axonal repulsion. These results suggest a novel role for oxidoreductases in repulsive neuronal guidance.  相似文献   

16.
Axonal cytoskeletal and cytosolic proteins are synthesized in the neuronal cell body and transported along axons by slow axonal transport, but attempts to observe this movement directly in living cells have yielded conflicting results. Here we report the direct observation of the axonal transport of neurofilament protein tagged with green fluorescent protein in cultured nerve cells. Live-cell imaging of naturally occurring gaps in the axonal neurofilament array reveals rapid, intermittent and highly asynchronous movement of fluorescent neurofilaments. The movement is bidirectional, but predominantly anterograde. Our data indicate that the slow rate of slow axonal transport may be the result of rapid movements interrupted by prolonged pauses.  相似文献   

17.
A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level.  相似文献   

18.
Reactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, referred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.  相似文献   

19.
During axonal transport, membranes travel down axons at a rapid rate, whereas the cytoskeletal elements travel in either of two slow components, SCa (with tubulin and neurofilament protein) and SCb (with actin). Clathrin, the highly ordered, structural coat protein of coated vesicles, has recently been shown to be able to interact in vitro with cytoskeletal proteins in addition to membranes. The present study examines whether clathrin travels preferentially with the membrane elements or the cytoskeletal elements when it is axonally transported. Guinea pig visual system was labeled with tritiated amino acids. Radioactive SDS-polyacrylamide gel electrophoresis profiles from the major components of transport were coelectrophoresed with clathrin. Only SCb had a band comigrating with clathrin. In addition, radioactive clathrin was purified from guinea pig brain containing only radioactive SCb polypeptides. Kinetic analysis of the putative clathrin band in SCb revealed that it travels entirely within the SCb wave. Thus we conclude that clathrin travels preferentially with the cytoskeletal proteins making up SCb, rather than with the membranes and membrane-associated proteins in the fast component.  相似文献   

20.
Membranous and nonmembranous cargoes are transported along axons in the fast and slow components of axonal transport, respectively. Recent observations on the movement of cytoskeletal polymers in axons suggest that slow axonal transport is generated by fast motors and that the slow rate is due to rapid movements interrupted by prolonged pauses. This supports a unified perspective for fast and slow axonal transport based on rapid movements of diverse cargo structures that differ in the proportion of the time that they spend moving. A Flash feature (http://www.jcb.org/cgi/content/full/jcb.200212017/DC1) accompanies this Mini-Review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号