首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the role of the ceca in nitrogen nutrition in chickens (Gallus domesticus). Urea is a very good nitrogen tracer for these studies. Little urea is synthesized by chickens due to the absence of carbamyl phosphate synthetase, an essential enzyme initiating the urea cycle. Urea is utilized by chickens when crystalline amino acid diets low in nonessential nitrogen or diets containing low concentrations of intact protein are fed, and most ureolytic activity is found in the ceca. Dietary urea was absorbed intact from the upper intestine of the chicken. The absorbed urea was excreted into ureteral urine that refluxed from the cloaca into the colon and ceca where urea was degraded to ammonia. Presumably the ammonia was incorporated into amino acids by cecal microorganisms and some urea, amino acids and proteins were absorbed from the ceca. These were utilized by the chickens. A beneficial role of ceca in the nitrogen metabolism in the chicken is, therefore, conservation of urinary nitrogen in protein-depleted chickens.  相似文献   

2.
Capacities for urea synthesis and amino acid patterns in the perfused livers isolated from rats fed low and high-protein diets were compared. Urea formation with amjonium chlorode as the nitrogen source in perfused livers isolated from rats fed on a 70% casein diet was rapid and the efficiency of conversion of ammonia to urea was 97.9%. However, that in livers isolated from rats fed on a 5% casein diet was much slower and the efficiency of conversion of ammonia to urea was only 36.1%. The ratios of the rate of urea formation from ammonium chloride to activity of ornithine transcarbamylase [EC 2.1.3.3.] in the perfused livers of rats fed on 5 and 70% casein diets were calculated. The ratio of the former condition was much lower than that of the latter. The ratios reached nearly the same level by the addition of ornithine and N-acetylglutamate, the addition of which to the perfusate caused marked elevation of the ratios in both cases. In the perfused livers from rats fed on a 5% casein diet a considerable portion of the ammonia added to the perfusate was fixed into an amino ro an amide group of amino acids such as alamin, aspartate, and glutamine. On the other hand, in the perfused livers from rats fed on a 70% casein diet most of the ammonia added was converted to urea. The regulation of urea synthesis and the relation between anabolism and catabolism of amino acids in rat livers subjected to different dietary conditions were compared.  相似文献   

3.
A total of 114 bacterial isolates were obtained from the cecal contents of two mature cecally fistulated horses on a habitat-simulating medium containing 40% energy-depleted cecal fluid. Of these isolates, 108 were maintained in pure cultures and were tentatively grouped on the basis of cell morphology and physiological characteristics. Gram-negative rods (50.9%), gram-positive rods (22.8%), and gram-positive cocci (21.9%) represented the largest groups isolated from these animals. Fifty isolates were tested for their ability to grow in media containing urea, ammonia, peptones, or amino acids as sole nitrogen sources. None of the isolates had a unique requirement for urea or ammonia since nitrogen derived from peptones, amino acids, or both supported growth as well as did ammonia or urea in a low nitrogen medium. Of the cecal isolates, 18% were able to use urea for growth, and 20.5% were able to grow with ammonia as the sole nitrogen source. All organisms grew in the experimental media containing peptones as the sole nitrogen source. Urease activity was detected in only 2 of 114 isolates tested. The inability of isolates to use urea or ammonia as nitrogen sources may have been a reflection of growth conditions in the habitat-stimulating medium used for isolation, but it could also suggest that many cecal bacteria require nitrogen sources other then ammonia or urea for growth.  相似文献   

4.
Nitrogen utilization in bacterial isolates from the equine cecum.   总被引:1,自引:1,他引:0       下载免费PDF全文
A total of 114 bacterial isolates were obtained from the cecal contents of two mature cecally fistulated horses on a habitat-simulating medium containing 40% energy-depleted cecal fluid. Of these isolates, 108 were maintained in pure cultures and were tentatively grouped on the basis of cell morphology and physiological characteristics. Gram-negative rods (50.9%), gram-positive rods (22.8%), and gram-positive cocci (21.9%) represented the largest groups isolated from these animals. Fifty isolates were tested for their ability to grow in media containing urea, ammonia, peptones, or amino acids as sole nitrogen sources. None of the isolates had a unique requirement for urea or ammonia since nitrogen derived from peptones, amino acids, or both supported growth as well as did ammonia or urea in a low nitrogen medium. Of the cecal isolates, 18% were able to use urea for growth, and 20.5% were able to grow with ammonia as the sole nitrogen source. All organisms grew in the experimental media containing peptones as the sole nitrogen source. Urease activity was detected in only 2 of 114 isolates tested. The inability of isolates to use urea or ammonia as nitrogen sources may have been a reflection of growth conditions in the habitat-stimulating medium used for isolation, but it could also suggest that many cecal bacteria require nitrogen sources other then ammonia or urea for growth.  相似文献   

5.
Control by pH of urea synthesis in isolated rat hepatocytes   总被引:2,自引:0,他引:2  
Control by pH of urea synthesis has been studied in isolated rat hepatocytes incubated with a physiological mixture of amino acids. Inhibition of urea synthesis by decreasing the pH of the medium was caused by diminished production of ammonia and not, as suggested in the literature, by inhibition of entry of ammonia into the ornithine cycle. The decrease by low pH of the rate of degradation of the added amino acids, that of alanine being quantitatively the most important, was accompanied by a decrease in their intracellular concentration. It is concluded that inhibited transport of amino acids across the plasma membrane of the hepatocyte is responsible, at least in part, for the fall in urea synthesis with decreasing pH. It is proposed that inhibition by low pH of other steps in the ureogenic pathway, distal to the production of ammonia, does not affect flux through the ornithine cycle per se, but rather contributes to the buffering of the intrahepatic concentration of ammonia.  相似文献   

6.
This study aimed to determine effects of 6-day progressive increase in salinity from 1 per thousand to 15 per thousand on nitrogen metabolism and excretion in the soft-shelled turtle, Pelodiscus sinensis. For turtles exposed to 15 per thousand water on day 6, the plasma osmolality and concentrations of Na+, Cl- and urea increased significantly, which presumably decreased the osmotic loss of water. Simultaneously, there were significant increases in contents of urea, certain free amino acids (FAAs) and water-soluble proteins that were involved in cell volume regulation in various tissues. There was an apparent increase in proteolysis, releasing FAAs as osmolytes. In addition, there might be an increase in catabolism of certain amino acids, producing more ammonia. The excess ammonia was retained as indicated by a significant decrease in the rate of ammonia excretion on day 4 in 15 per thousand water, and a major portion of it was converted to urea. The rate of urea synthesis increased 1.4-fold during the 6-day period, although the capacity of the hepatic ornithine urea cycle remained unchanged. Urea was retained for osmoregulation because there was a significant decrease in urea excretion on day 4. Increased protein degradation and urea synthesis implies greater metabolic demands, and indeed turtles exposed to 15 per thousand water had significantly higher O2 consumption rate than the freshwater (FW) control. When turtles were returned from 15 per thousand water to FW on day 7, there were significant increases in ammonia (probably released through increased amino acid catabolism) and urea excretion, confirming that FAAs and urea were retained for osmoregulatory purposes in brackish water.  相似文献   

7.
Nitrogen Metabolism of the Human Brain   总被引:1,自引:0,他引:1  
Cerebral nitrogen metabolism was studied in 29 healthy nonobese volunteers by means of a catheterization technique. Arterial levels and arterial-jugular venous (A-JV) concentration differences for amino acids, urea, ammonia, 5-oxoproline, glucose, and oxygen were measured in the basal, postabsorptive state and during an intravenous infusion of a commercial amino acid solution. In the basal state positive A-JV differences, indicating a net brain uptake, were noted for 12 of 22 amino acids as well as for ammonia. There was no significant net exchange for urea or for 5-oxoproline. During amino acid infusion, resulting in a 150-300% rise in arterial amino acid levels, the brain uptake of isoleucine, leucine, and tyrosine increased significantly, and a similar tendency was seen for most other amino acids. The infusion was accompanied by a 100% rise in arterial ammonia levels and a 10% increase in urea concentration. For ammonia the small positive A-JV difference in the basal state became markedly greater during amino acid infusion, whereas no significant alteration was noted for urea exchange across the brain. The A-JV differences for glucose and oxygen were positive in the basal state and unchanged during the infusion. The present findings demonstrate that in the basal state (a) there is a significant net brain uptake of most amino acids; (b) no single amino acid, urea, or 5-oxoproline is released from the brain; and (c) ammonia uptake occurs both in this state and during an amino acid infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary Submerged culture experiments were conducted to determine the optimal nitrogen source for rapidly producing conidia of the bioherbicide,Colletotrichum truncatum. Germination ofC. truncatum conidial inocula in submerged culture occurred most rapidly (>95% in 6 h) in media provided with a complete complement of amino acids. When (NH4)2SO4, urea, or individual amino acids were provided as the sole nitrogen source, conidial germination was less than 20% after 6 h incubation. Conidia production was delayed inC. truncatum cultures grown in media with urea or individual amino acids as nitrogen sources compared to cultures supplied with Casamino acids or complete synthetic amino acid nitrogen sources. The use of methionine, lysine, tryptophan, isoleucine, leucine or cysteine as a sole nitrogen source severely inhibitedC. truncatum conidia production. Media with synthetic amino acid mixtures less these inhibitory amino acids produced significantly higher conidia yields compared to media with amino acid mixtures containing these amino acids. When various amounts of each individual inhibitory amino acid were added to media which contained amino acid mixtures, cysteine and methionine were shown to be most effective in reducing conidiation. An optimal nitrogen source forC. truncatum conidiation in submerged culture should contain a complete mixture of amino acids with low levels of cysteine, methionine, leucine, isoleucine, lysine and tryptophan for rapid conidiation and optimal conidia yield.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

9.
Control of ureogenesis   总被引:3,自引:0,他引:3  
Control of urea synthesis was studied in rat hepatocytes incubated with physiological mixtures of amino acids in which arginine was replaced by equimolar amounts of ornithine. The following observations were made. Intramitochondrial carbamoyl phosphate was always below 0.1 mM. Only when ornithine was absent and when, in addition, the concentration of amino acids was higher than four times their plasma concentration, intramitochondrial carbamoyl phosphate rose up to about 3 mM; under these conditions ammonia accumulated in the medium. The relationship between ornithine-cycle flux and the concentration of the cycle intermediates at varying amino acid concentration indicated that under near-physiological conditions the ornithine-cycle enzymes are far from being saturated with their subsidiaries. Moderate concentrations of norvaline had no effect on the rate of urea synthesis unless the cells were severely depleted of ornithine. Activation of carbamoyl-phosphate synthetase (ammonia) by addition of N-carbamoylglutamate only slightly stimulated urea production at all amino acid concentrations. However, in the presence of the activator the curve relating ornithine-cycle flux to the steady-state ammonia concentration was shifted to lower concentrations of ammonia. The intramitochondrial concentration of carbamoyl phosphate in rat liver in vivo was below 0.1 mM. This value is far below the concentration required for substantial inhibition of carbamoyl-phosphate synthetase. It is concluded that in vivo the function of activity changes in carbamoyl-phosphate synthetase, via the well-documented alterations in the intramitochondrial concentration of N-acetylglutamate, is to buffer the intrahepatic ammonia concentration rather than to affect urea production per se. At constant concentration of ammonia the rate of urea production is entirely controlled by the activity of carbamoyl-phosphate synthetase.  相似文献   

10.
A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth.  相似文献   

11.
Effects of repeated administration of benthiocarb on the nitrogen metabolism of hepatic and neuronal systems have been studied. Repeated benthiocarb treatment was associated with significant decrease in proteins with a concomitant increase in free amino acids (FAA) and specific activity levels of proteases suggesting impaired protein synthesis or elevated proteolysis. The glycogenic aminotransferases showed a significant elevation in both the tissues indicating high feeding of ketoacids into oxidative pathway for efficient operation of TCA cycle to combat energy crisis during induced benthiocarb stress. However, the activity levels of branched-chain aminotransferases decreased suggesting their reduced contribution of intermediates to TCA cycle. A comparative evaluation of the activity levels of ammonogenic enzymes, AMP deaminase, adenosine deaminase and glutamate dehydrogenase (GDH) indicated that ammonia was mostly contributed by nucleotide deamination rather than by oxidative deamination. GDH exhibited reduced activity due to low availability of glutamate. In accordance with increased levels of urea, the activity levels of arginase, a terminal enzyme of urea cycle was increased suggesting increased urea cycle operation in order to combat the increased ammonia content. As the presence of urea cycle in the brain is rather doubtful, the conversion of ammonia to glutamine for the synthesis of GABA is envisaged in brain whereas in liver, excess ammonia was converted to urea through ornithine-arginine reacting system. The increased glutaminase activity observed during benthiocarb intoxication is accounted for counteracting acidosis or maintenance of metabolic homeostasis. Arginase, a terminal enzyme of ornithine cycle showed increased activity denoting the efficient potentiality of tissues to avert ammonia toxicity. The changes observed in tissues of rat administered with benthiocarb reflects a shift in nitrogen metabolism for efficient mobilization of end products of protein catabolism.  相似文献   

12.
A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth.  相似文献   

13.
Comparative physiological studies are a powerful tool for revealing common animal adaptations. Amino acid catabolism produces ammonia which is detoxified through the synthesis of urea (mammals, some fish), uric acid (birds), or urea and uric acid (reptiles). In mammalian herbivores and omnivores, urea nitrogen is salvaged by a series of steps involving urea transfer into the intestine, microbial mediated urea hydrolysis with synthesis of amino acids utilizing the liberated ammonia and transfer of the amino acids back to the host. A similar series of steps occur in omnivorous/granivorous and herbivorous birds, although in this case urine, containing uric acid, is refluxed directly into the intestine where microbes degrade the uric acid and utilize the liberated ammonia for amino acid synthesis. These amino acids are transferred back to the host. In reptiles and ureotelic fish not all of these steps have been experimentally confirmed. Reptiles like birds, reflux urine into the intestine where it is exposed to the microflora. However, the capacity of these microbes to breakdown the uric acid and urea and utilize ammonia for amino acid synthesis has not been documented. Ureotelic fish transfer urea into the intestine where urease (presumably of bacterial origin) hydrolyzes the urea. However, the amino acid synthesizing capacity of the intestinal microflora has not been studied. The series of steps, as outlined, would define the prevailing nitrogen conservation system for herbivores and omnivores at least. However, it would appear that some animals, in particular the fruit-eating bat and perhaps the fruit-eating bird, may have evolved alternative, as yet uncharacterized, adaptations to a very limited nitrogen intake.  相似文献   

14.
Thallus samples of £. prunastri (L.) Adi, floated on 40 mM urea developed urease (EC 3.5.1.5.) activity which levelled off after 6h. L-Arguiine, L-ornitfaine and patrescine added to the incubation media intitially enhanced the effect of urea, but the urease activity ceased after 4h of incubation in the presence of the latter two compounds or when L-arginine was used; as the sole source of nitrogen. This decline in activity was observed after 6h when L-arginine was added to urea-containing media. The loss of urease activity is thought to result from the synthesis of repressers in the presence of the amino acids, whereas putrescine appears to affect membrane permeability by increasing the uptake of urea by the cells. Declining urease activity in the latter case would then be due to feedback inhibition caused by the excess of ammonia produced in both hydrolysis of urea and oxidation of putrescine.  相似文献   

15.
It is now apparent that many of the subtleties of cellular metabolism are intrinsically associated with cell structure and that their physiological study requires techniques that respect the integrity of cells and organs. We have used 15N-substrates to examine urea synthesis in the intact perfused rat liver. This work permits us to determine the extent to which different amino acids donate nitrogen atoms to the two nitrogens of urea. It is apparent that alanine and the amino group of glutamine provide nitrogen for urea synthesis primarily via cytoplasmic aspartate, whereas mitochondrial ammonia is the preferred route of entry for nitrogen from pre-formed ammonia or from the amide nitrogen of glutamine. Most importantly, this methodology permits us to explore for the occurrence of metabolic channels in such a highly organised, physiological system. Our studies indicate that a metabolic channel does not exist between glutaminase and carbamoylphosphate synthetase 1.  相似文献   

16.
Nutrition-based strategies to optimize xylose to ethanol conversion by Pichia stipitis were identified in growing and stationary-phase cultures provided with a defined medium varied in nitrogen, vitamin, purine/pyrimidine, and mineral content via full or partial factorial designs. It is surprising to note that stationary-phase cultures were unable to ferment xylose (or glucose) to ethanol without the addition of a nitrogen source, such as amino acids. Ethanol accumulation increased with arginine, alanine, aspartic acid, glutamic acid, glycine, histidine, leucine, and tyrosine, but declined with isoleucine. Ethanol production from 150 g/l xylose was maximized (61±9 g/l) by providing C:N in the vicinity of ∼57–126:1 and optimizing the combination of urea and amino acids to supply 40–80 % nitrogen from urea and 60–20 % from amino acids (casamino acids supplemented with tryptophan and cysteine). When either urea or amino acids were used as sole nitrogen source, ethanol accumulation dropped to 11 or 24 g/l, respectively, from the maximum of 46 g/l for the optimal nitrogen combination. The interaction of minerals with amino acids and/or urea was key to optimizing ethanol production by cells in both growing and stationary-phase cultures. In nongrowing cultures supplied with nitrogen as amino acids, ethanol concentration increased from 24 to 54 g/l with the addition of an optimized mineral supplement of Fe, Mn, Mg, Ca, Zn, and others.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

17.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

18.
It was found in the experiments with rats that in response to carminomycin administration in a single LD50 and the therapeutic doses during the treatment course the intracellular fond of the amino acids in the liver tissue increased, the autolytic processes activated, the activity of the transamination enzymes, histidine and ammonia lyases increased. The level of the residual nitrogen increased mainly at the expense of increased ammonia production and urea levels. These changes were more pronounced when the antibiotic was administered in LD50. Independent of the administration multiplicity and the antibiotic dosage they were of reversible nature and mainly disappeared by the end of the observation.  相似文献   

19.
This study examined the seasonal and reproductive influences on individual plasma amino acid concentrations and nitrogen metabolites in a black bear population (Ontario, Canada). During hibernation, 11 of 23 plasma amino acids were significantly higher (13%-108%) in lactating than in nonlactating females, without an alteration in plasma total protein or total essential or nonessential amino acid levels. The greatest changes were observed in glutamine, arginine, and glycine levels. Plasma urea, urea/creatinine, and ammonia levels were significantly lower in hibernating compared with active female bears, but lactation had no effect on these parameters. Taken together these results show that lactation during hibernation is an additional metabolic challenge that results in increased mobilization of individual plasma amino acids and no accumulation of nitrogen end products, underlining the remarkable efficiency of amino acid and urea recycling in denning female black bears.  相似文献   

20.
The nitrogen metabolism and excretion patterns of the grunting toadfish Allenbatrachus grunniens and the effects of salinity on these processes were examined. Individuals of A. grunniens were subjected to several experimental treatments, including variable salinity (2 to 30), high pH (8·5 compared to 7·0 for controls), high environmental ammonia (10 mM) and confinement to small water volumes, and measurements were made of activities of selected enzymes of nitrogen metabolism, ammonia and urea excretion rates, and tissue and plasma contents of ammonia, urea and amino acids. Activities of key ornithine‐urea cycle enzymes were rather low ( e.g . liver carbamoyl phosphate synthetase III activity was 0·001 μmols min−1 g−1), and A. grunniens consistently demonstrated a low capacity for urea excretion despite significant elevations of plasma and tissue ammonia contents by the high pH and high ammonia treatments. This species could thus be categorized as ammoniotelic. Total free amino acid contents in plasma and tissues were increased by the high pH and high ammonia treatments, but no patterns were discerned in individual amino acids that would indicate any preferential accumulation ( e.g . alanine and glutamine) as has been noted previously in several semi‐terrestrial fish species. Thus, it appeared that A. grunniens was not unusual in its patterns of nitrogen metabolism and excretion in comparison to other 'typical' teleosts. Furthermore, manipulation of salinity had no major effects on nitrogen excretion in either this species or in comparative studies with the ureotelic gulf toadfish Opsanus beta . The results are discussed in the context of the broader pattern of nitrogen metabolism and excretion in the Batrachoididae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号