首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work on pattern formation in the Drosophila embryo reveals a new mechanism which shapes the gradient of the secreted morphogen, Wingless: Wingless protein is degraded more rapidly on one side of its source than on the other.  相似文献   

2.
3.
4.
Growth factors are secreted into the extracellular space, where they encounter soluble inhibitors, extracellular matrix glycoproteins and proteoglycans, and proteolytic enzymes that can each modulate the spatial distribution, activity state, and receptor interactions of these signaling molecules. During development, morphogenetic gradients of these growth factors pattern fields of cells responsive to different levels of signaling, creating such structures as the branched pattern of airways and vasculature, and the arrangement of digits in the hand. This review focuses specifically on the roles of proteolytic enzymes and their regulators in the generation of such activity gradients. Evidence from Drosophila developmental pathways provides a detailed understanding of general mechanisms underlying proteolytic control of morphogen gradients, while recent studies of several mammalian growth factors illustrate the relevance of this proteolytic control to human development and disease.  相似文献   

5.

Background  

RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis.  相似文献   

6.
7.
Untangling the ErbB signalling network   总被引:1,自引:0,他引:1  
When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion. The network is often dysregulated in cancer and lends credence to the mantra that molecular understanding yields clinical benefit: over 25,000 women with breast cancer have now been treated with trastuzumab (Herceptin), a recombinant antibody designed to block the receptor ErbB2. Likewise, small-molecule enzyme inhibitors and monoclonal antibodies to ErbB1 are in advanced phases of clinical testing. What can this pathway teach us about translating basic science into clinical use?  相似文献   

8.
9.
10.
Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared.  相似文献   

11.
12.
Insulin signalling is a potent stimulator of cell growth and has been proposed to function, at least in part, through the conserved protein kinase TOR (target of rapamycin) [corrected]. Recent studies suggest that the tuberous sclerosis complex Tsc1-Tsc2 may couple insulin signalling to Tor activity [corrected]. However, the regulatory mechanism involved remains unclear, and additional components are most probably involved. In a screen for novel regulators of growth, we identified Rheb (Ras homologue enriched in brain), a member of the Ras superfamily of GTP-binding proteins. Increased levels of Rheb in Drosophila melanogaster promote cell growth and alter cell cycle kinetics in multiple tissues. In mitotic tissues, overexpression of Rheb accelerates passage through G1-S phase without affecting rates of cell division, whereas in endoreplicating tissues, Rheb increases DNA ploidy. Mutation of Rheb suspends larval growth and prevents progression from first to second instar. Genetic and biochemical tests indicate that Rheb functions in the insulin signalling pathway downstream of Tsc1-Tsc2 and upstream of TOR. Levels of rheb mRNA are rapidly induced in response to protein starvation, and overexpressed Rheb can drive cell growth in starved animals, suggesting a role for Rheb in the nutritional control of cell growth.  相似文献   

13.
14.
15.
Calcium is a universal intracellular signal that is responsible for controlling a plethora of cellular processes. Understanding how such a simple ion can regulate so many diverse cellular processes is a key goal of calcium- and cell-biologists. One molecule that is sensitive to changes in intracellular calcium levels is Ras. This small GTPase operates as a binary molecular switch, and regulates cell proliferation and differentiation. Here, we focus on examining the link between calcium and Ras signalling and, in particular, we speculate as to how the complexity of calcium signalling could regulate Ras activity.  相似文献   

16.
Integration of biochemical signalling in spines   总被引:4,自引:0,他引:4  
Short-term and long-term changes in the strength of synapses in neural networks underlie working memory and long-term memory storage in the brain. These changes are regulated by many biochemical signalling pathways in the postsynaptic spines of excitatory synapses. Recent findings about the roles and regulation of the small GTPases Ras, Rap and Rac in spines provide new insights into the coordination and cooperation of different pathways to effect synaptic plasticity. Here, we present an initial working representation of the interactions of five signalling cascades that are usually studied individually. We discuss their integrated function in the regulation of postsynaptic plasticity.  相似文献   

17.
18.
19.
Anteroposterior (AP) patterning of the vertebrate neural plate is initiated during gastrulation and is regulated by Spemann's organizer and its derivatives. The prevailing model for AP patterning predicts a caudally increasing gradient of a 'transformer' which posteriorizes anteriorly specified neural cells. However, the molecular identity of the transforming gradient has remained elusive. We show that in Xenopus embryos (1) dose-dependent Wnt signalling is both necessary and sufficient for AP patterning of the neuraxis, (2) Wnt/beta-catenin signalling occurs in a direct and long-range fashion within the ectoderm, and (3) that there is an endogenous AP gradient of Wnt/beta-catenin signalling in the presumptive neural plate of the Xenopus gastrula. Our results indicate that an activity gradient of Wnt/beta-catenin signalling acts as transforming morphogen to pattern the Xenopus central nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号