首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombineering is employed to modify large DNA clones such as fosmids, BACs and PACs. Subtle and seamless modifications can be achieved using counter-selection strategies in which a donor cassette carrying both positive and negative markers inserted in the target clone is replaced by the desired sequence change. We are applying counter-selection recombineering to modify bacmid bMON14272, a recombinant baculoviral genome, as we wish to engineer the virus into a therapeutically useful gene delivery vector with cell targeting characteristics. Initial attempts to replace gp64 with Fusion (F) genes from other baculoviruses resulted in many rearranged clones in which the counter-selection cassette had been deleted. Bacmid bMON14272 contains nine highly homologous regions (hrs) and deletions were mapped to recombination between hr pairs. Recombineering modifications were attempted to decrease intramolecular recombination and/or increase recombineering efficiency. Of these only the use of longer homology arms on the donor molecule proved effective permitting seamless modification. bMON14272, because of the presence of the hr sequences, can be considered equivalent to a highly repetitive BAC and, as such, the optimized method detailed here should prove useful to others applying counter-selection recombineering to modify BACs or PACs containing similar regions of significant repeating homologies.  相似文献   

2.
Basic to the development of long-range physical maps of DNA are the detection and localization of landmarks within recombinant clones. Sequence-tagged sites (STSs), which are short stretches of DNA that can be specifically detected by the polymerase chain reaction (PCR), can be used as such landmarks. Our interest is to construct physical maps of whole human chromosomes by localizing STSs within yeast artificial chromosome (YAC) clones. Here we describe a generalized strategy for the systematic generation of large numbers of STSs specific for human chromosome 7. These STSs can be detected by PCR assays developed following the sequencing of anonymous pieces of chromosome 7 DNA, which was derived from flow-sorted chromosomes or from lambda clones made from DNA of a human-hamster hybrid cell line. Our approach for STS generation is tailored for the development of PCR assays capable of screening a large YAC library. In this study, we report the generation of 100 new STSs specific to human chromosome 7.  相似文献   

3.
Rapid generation of directed and unmarked deletions in Xanthomonas   总被引:6,自引:0,他引:6  
We have devised a rapid four-step procedure for the generation of directed and unmarked chromosomal deletions in bacteria, based on the use of a novel cloning vector containing the Bacillus subtilis sacB gene that encodes levansucrase and confers sucrose sensitivity, which can be used for counter-selection. Using this technique, we describe the construction of a 6.5 kb directed and unmarked deletion in a phytopathogenicity region of the chromosome in Xanthomonas campestris. This procedure allows rapid and easy transfer of a wide variety of mutant allelic DNA to the bacterial chromosome, and should be adaptable to various bacteria besides Xanthomonas spp.  相似文献   

4.
5.
An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum.  相似文献   

6.
Previous analysis of plasmid DNA transfected into 108 cell clones demonstrated extensive polymorphism near the integration site in one clone. This polymorphism was apparent by Southern blot analysis as diffuse bands that extended over 30 kb. In the present study, nucleotide sequence analysis of cloned DNA from the integration site revealed telomere repeat sequences at the ends of the integrated plasmid DNA. The telomere repeat sequences at one end were located at the junction between the plasmid and cell DNA. The telomere repeat sequences at the other end were located in the opposite orientation in the polymorphic region and were shown by digestion with BAL 31 to be at the end of the chromosome. Telomere repeat sequences were not found at this location in the plasmid or parent cell DNA. Although the repeat sequences may have been acquired by recombination, a more likely explanation is that they were added to the ends of the plasmid by telomerase before integration. Comparison of the cell DNA before and after integration revealed that a chromosome break had occurred at the integration site, which was shown by fluorescent in situ hybridization to be located near the telomere of chromosome 13. These results demonstrate that chromosome breakage and rearrangement can result in interstitial telomere repeat sequences within the human genome. These sequences could promote genomic instability, because short repeat sequences can be recombinational hotspots. The results also show that DNA rearrangements involving telomere repeat sequences can be associated with chromosome breaks. The introduction of telomere repeat sequences at spontaneous or ionizing radiation-induced DNA strand breaks may therefore also be a mechanism of chromosome fragmentation.  相似文献   

7.
Bok J  Kim KJ  Park MH  Cho SH  Lee HJ  Lee EJ  Park C  Lee JY 《BMB reports》2012,45(6):365-370
Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.  相似文献   

8.
Two new diphasmid vectors (lambda SK17 and SK22) and a novel procedure to construct linking libraries are described. A partial filling-in reaction provides counter-selection against false linking clones in the library, and obviates the need for supF selection. The diphasmid vectors, in combination with the novel selection procedure, have been used to construct a chromosome 3 specific NotI linking library from a human chromosome 3/mouse microcell hybrid cell line. The application of the new vectors and the strong biochemical and biological selections resulted in a library of 60,000 NotI linking clones. As practically all of them are real NotI linking clones (no false recombinants) the library represents approximately 3,000 human recombinants (equal to 10-15 genomic equivalents of chromosome 3). Previously published methods for construction of linking libraries are compared with the procedure described in the present paper. The advantages of the new vectors and the novel protocol are discussed.  相似文献   

9.
A partial library of cloned human DNA was screened for sequences represented on and specific to the X chromosome. The library was constructed from Bam HI-digested human DNA from cells with X chromosome polyploidy, and was cloned in pBR322. The screening was performed by individually hybridizing 32P-labeled cloned plasmids to Southern blots containing Bam HI-digested DNA from mouse-human hybrid cells having the human X chromosome and from derivative hybrids lacking the human X. Of 45 clones assayed, 33 contained sequences homologous to ones represented many times on the X. In situ hybridization to metaphase chromosomes demonstrated that at least four of these clones were homologous to autosomes as well. Only one of the 18 clones of this kind tested cross-hybridized with another. Two recombinant plasmids were shown to be derived from the X chromosome and to be X chromosome-specific by three criteria: they hybridized to a single band in the Southern blots of Bam HI-digested DNA from hybrid cells containing the X chromosome; they hybridized to a band of the same molecular weight as did the inserted DNA fragment; and they showed a dosage effect when hybridized to Southern blots of Bam HI-digested DNA from XY and XXX cells. One of these hybridized as a single-copy or low-order reiterated sequence in a Cot analysis using male DNA as driver. Our methods can be applied to the identification of any chromosome-specific clone. The two X-specific clones identified here should be useful in investigating the mechanism of X inactivation and in isolating a Barr body.  相似文献   

10.
Counter-selectable markers can be used in two-hybrid systems to search libraries for a protein or compound that interferes with a macromolecular interaction or to identify macromolecules from a population that cannot mediate a particular interaction. In this report, we describe the adaptation of the yeast URA3/5-FOA counter-selection system for use in bacterial interaction trap experiments. Two different URA3 reporter systems were developed that allow robust counter-selection: (i) a single copy F' episome reporter and (ii) a co-cistronic HIS3-URA3 reporter vector. The HIS3-URA3 reporter can be used for either positive or negative selections in appropriate bacterial strains. These reagents extend the utility of the bacterial two-hybrid system as an alternative to its yeast-based counterpart.  相似文献   

11.
Integrated karyotyping of sorghum by in situ hybridization of landed BACs.   总被引:7,自引:0,他引:7  
The reliability of genome analysis and proficiency of genetic manipulation are increased by assignment of linkage groups to specific chromosomes, placement of centromeres, and orientation with respect to telomeres. We have endeavored to establish means to enable these steps in sorghum (Sorghum bicolor (L.) Moench), the genome of which contains ca. 780 Mbp spread across n = 10 chromosomes. Our approach relies on fluorescence in situ hybridization (FISH) and integrated structural genomic resources, including large-insert genomic clones in bacterial artificial chromosome (BAC) libraries. To develop robust FISH probes, we selected sorghum BACs by association with molecular markers that map near the ends of linkage groups, in regions inferred to be high in recombination. Overall, we selected 22 BACs that encompass the 10 linkage groups. As a prelude to development of a multiprobe FISH cocktail, we evaluated BAC-derived probes individually and in small groups. Biotin- and digoxygenin-labeled probes were made directly from the BAC clones and hybridized in situ to chromosomes without using suppressive unlabelled C0t-1 DNA. Based on FISH-signal strength and the relative degree of background signal, we judged 19 BAC-derived probes to be satisfactory. Based on their relative position, and collective association with all 10 linkage groups, we chose 17 of the 19 BACs to develop a 17-locus probe cocktail for dual-color detection. FISH of the cocktail allowed simultaneous identification of all 10 chromosomes. The results indicate that linkage and physical maps of sorghum allow facile selection of BAC clones according to position and FISH-signal quality. This capability will enable development of a high-quality molecular cytogenetic map and an integrated genomics system for sorghum, without need of chromosome flow sorting or microdissection. Moreover, transgeneric FISH experiments suggest that the sorghum system might be applicable to other Gramineae.  相似文献   

12.
Selection-based recombineering is a flexible and proven technology to precisely modify bacterial genomes at single base resolution. It consists of two steps of homologous recombination followed by selection/counter-selection. However, the shortage of efficient counter-selectable markers limits the throughput of this method. Additionally, the emergence of ‘selection escapees’ can affect recombinant pools generated through this method, and they must be manually removed at each step of selection-based recombineering. Here, we report a series of efforts to improve the throughput and robustness of selection-based recombineering and to achieve seamless and automatable genome engineering. Using the nucleoside kinase activity of herpes simplex virus thymidine kinase (hsvTK) on the non-natural nucleoside dP, a highly efficient, rapid, and liquid-based counter-selection system was established. By duplicating hsvtk gene, combined with careful control of the population size for the subsequent round, we effectively eliminated selection escapes, enabling seamless and multiple insertions/replacement of gene-size fragments in the chromosome. Four rounds of recombineering could thus be completed in 10 days, requiring only liquid handling and without any need for colony isolation or genotype confirmation. The simplicity and robustness of our method make it broadly accessible for multi-locus chromosomal modifications.  相似文献   

13.
DNA is replicated in a defined temporal order that is developmentally regulated and constitutes a unique and stable fingerprint of a given cell type. Recently, we developed a robust assay to profile replication timing genome wide that can be applied to essentially any proliferating cell population. Asynchronously cycling cells are pulse labeled with the nucleotide analog 5-bromo-2-deoxyuridine (BrdU). The cells are sorted into S-phase fractions on the basis of DNA content using flow cytometry. BrdU-labeled DNA from each fraction is immunoprecipitated (BrdU IP), amplified, differentially labeled and co-hybridized to a whole-genome comparative genomic hybridization microarray (or sequenced). Since the basic steps of this protocol have been detailed elsewhere, here we focus on problems encountered when adapting this protocol to different cell types or tissue sources and modifications that have been successfully applied to troubleshoot these problems. There is an increasing demand for such studies to address how replication is regulated during development, its relationship to chromatin architecture and other chromosome functions, and the relevance of cell culture models to regulation in the native organismal niche.  相似文献   

14.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

15.
Sequence-tagged sites (STSs) are short stretches of DNA that can be specifically detected by the polymerase chain reaction (PCR) and can be used to construct long-range physical maps of chromosomal DNA. These STSs can be detected by PCR assays developed by reference to data obtained from the sequencing of restriction fragment length polymorphism-DNA markers for chromosome 21, which were derived from recombinant lamba-phage and plasmid clones made from DNA of a human-hamster hybrid cell line. In this report, we describe the generation of 19 new STSs that are specific for human chromosome 21.  相似文献   

16.
Linking clones contain sequences flanking recognition sites for enzymes cutting rarely in mammalian DNA. They can be used to obtain and correlate both physical and genetic mapping information over subregions of mammalian chromosomes. We have constructed and used a NotI linking clone library representing unmethylated NotI sites from HHW693 DNA, a hamster hybrid cell line containing 4p15-4pter and a fragment of 5p as its only human chromosome contribution. Human clones were identified by hybridisation with a cloned human repeat sequence, and localised further to subregions of human chromosome 4p15-4pter using a panel of additional hybrids. Clones from the region distal to the DNA probes (D4S10, D4S43, D4S95) linked to the Huntington's disease mutation, were further analysed. Four markers close to the HD gene: D4S111, D4S113, D4S114 and clone 417 are described here. In addition to serving as markers in physical and genetic mapping experiments, these linking clones provide probes next to cleavable NotI sites, and can therefore be used to screen NotI based chromosome jumping libraries. They also provide indications for potential gene sequences, identifiable as evolutionarily conserved sequences.  相似文献   

17.
We have developed a system for site-specific DNA integration in human cells, mediated by the adeno-associated virus (AAV) Rep proteins. In its normal lysogenic cycle, AAV integrates at a site on human chromosome 19 termed AAVS1. We describe a rapid PCR assay for the detection of integration events at AAVS1 in whole populations of cells. Using this assay, we determined that the AAV Rep proteins, delivered in cis or trans, are required for integration at AAVS1. Only the large forms of the Rep protein, Rep78 and Rep68, promoted site-specific integration. The AAV inverted terminal repeats, present in cis, were not essential for integration at AAVS1, but in cells containing Rep, they increased the efficiency of integration. In the presence of the Rep proteins, the integration of a plasmid containing AAV inverted terminal repeats occurred at high frequency, such that clones containing the plasmid could be isolated without selection. In two of the five clones analyzed by fluorescence in situ hybridization, the plasmid DNA was integrated at AAVS1. In most of the clones, at least one copy of the entire plasmid was integrated in a tandem array. Detailed analysis of the integrated plasmid structure in one clone suggested a complex mechanism producing rearrangements of the flanking genomic DNA, similar to those observed with wild-type AAV.  相似文献   

18.
染色体畸变是恶性肿瘤细胞的重要遗传学特征, 文章旨在应用BAC DNA克隆鉴定食管癌细胞中的染色体臂和染色体区段的畸变。针对染色体各区段选取5~10个1 Mb BAC DNA, 分别混合制备成特定染色体区段的BAC DNA混合克隆, 然后将染色体臂上覆盖所有区段的上述混合克隆进一步混合制备成特定染色体臂BAC DNA混合克隆。利用简并寡核苷酸引物聚合酶链反应(Degenerate oligonucleotide primed PCR, DOP-PCR)标记染色体臂探针, 利用切口平移法(Nick translation)标记染色体区段探针, 并对食管癌细胞中期染色体进行荧光原位杂交(Fluorescence in situ hybridization, FISH)分析。正常人外周血淋巴细胞中期染色体FISH结果显示, 上述方法标记的探针具有较高的特异性。进一步利用染色体臂混合探针, 确定了多个食管癌细胞中的染色体重排所涉及的特定染色体臂; 利用染色体区段混合探针, 鉴定出KYSE140的t(1q;7q)衍生染色体中1q上的断点范围位于1q32-q41。文章成功建立了1 Mb BAC DNA混合克隆探针标记技术, 并鉴定出多个食管癌细胞中的染色体臂和染色体区段畸变, 不仅为利用M-FISH技术鉴定肿瘤细胞中的染色体畸变提供了更为准确的方法, 而且还可能进一步将该法推广应用于恶性血液病的核型分析以及产前诊断。  相似文献   

19.
Integration of hepatitis B virus: analysis of unoccupied sites.   总被引:5,自引:1,他引:4       下载免费PDF全文
I Berger  Y Shaul 《Journal of virology》1987,61(4):1180-1186
Hepatitis B virus (HBV) sequences integrated in the PLC/PRF/5 cell line (Alexander cells), which was derived from a human primary liver carcinoma, were previously extensively studied. Here we describe the analysis of the unoccupied sites of two linearly integrated forms of HBV DNA, AL-14 and AL-26, that were characterized previously. No major cellular DNA rearrangements were seen at the integration sites except for small deletions of host sequences: 2 kilobases of DNA in AL-14 and 17 base pairs (bp) in AL-26. The unoccupied site of AL-26 was found to be missing 182 bp, which previously mapped next to the right end of the integration sites of several independent clones. These were believed to be of cellular origin, but we show here that these 182 bp are in fact from unusual HBV sequences. Surprisingly, a region of this newly detected HBV DNA sequence is more homologous to that of woodchuck HBV DNA. Our analysis shows that the normal counterparts of both AL-14 and AL-26 contain minisatellite-like repetitive sequences. Based on the data presented here and our previous finding of HBV DNA integration at satellite sequences, we propose that genomic simple repetitive sequences are hot spots for HBV DNA integration.  相似文献   

20.
Adeno-associated virus (AAV) replication and biology have been extensively studied using cell culture systems, but there is precious little known about AAV biology in natural hosts. As part of our ongoing interest in the in vivo biology of AAV, we previously described the existence of extrachromosomal proviral AAV genomes in human tissues. In the current work, we describe the molecular structure of infectious DNA clones derived directly from these tissues. Sequence-specific linear rolling-circle amplification was utilized to isolate clones of native circular AAV DNA. Several molecular clones containing unit-length viral genomes directed the production of infectious wild-type AAV upon DNA transfection in the presence of adenovirus help. DNA sequence analysis of the molecular clones revealed the ubiquitous presence of a double-D inverted terminal repeat (ITR) structure, which implied a mechanism by which the virus is able to maintain ITR sequence continuity and persist in the absence of host chromosome integration. These data suggest that the natural life cycle of AAV, unlike that of retroviruses, might not have genome integration as an obligatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号