首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecophysiology of Antarctic vascular plants   总被引:11,自引:0,他引:11  
Most of the ice and snow-free land in the Antarctic summer is found along the Antarctic Peninsula and adjacent islands and coastal areas of the continent. This is the area where most of the Antarctic vegetation is found. Mean air temperature tends to be above zero during the summer in parts of the Maritime Antarctic. The most commonly found photosynthetic organisms in the Maritime Antarctic and continental edge are lichens (around 380 species) and bryophytes (130 species). Only two vascular plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl., have been able to colonize some of the coastal areas. This low species diversity, compared with the Arctic, may be due to permanent low temperature and isolation from continental sources of propagules. The existence of these plants in such a permanent harsh environment makes them of particular interest for the study of adaptations to cold environments and mechanisms of cold resistance in plants. Among these adaptations are high freezing resistance, high resistance to light stress and high photosynthetic capacity at low temperature. In this paper, the ecophysiology of the two vascular plants is reviewed, including habitat characteristics, photosynthetic properties, cold resistance, and biochemical adaptations to cold.  相似文献   

2.
3.
Salicylic acid and photosynthesis: signalling and effects   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is a well-known signalling molecule playing a role in local and systemic acquired resistance against pathogens as well as in acclimation to certain abiotic stressors. As a stress-related signalling compound, it may directly or indirectly affect various physiological processes, including photosynthesis. The effects of exogenously applied SA on plant physiological processes under optimal environmental conditions are controversial. Several studies suggest that SA may have a positive effect on germination or plant growth in various plant species. However, SA may also act as a stress factor, having a negative influence on various physiological processes. Its mode of action depends greatly on several factors, such as the plant species, the environmental conditions (light, temperature, etc.) and the concentration. Exogenous SA may also alleviate the damaging effects of various stress factors, and this protection may also be manifested as higher photosynthetic capacity. Unfavourable environmental conditions have also been shown to increase the endogenous SA level in plants. Recent results strongly suggest that controlled SA levels are important in plants for optimal photosynthetic performance and for acclimation to changing environmental stimuli. The present review discusses the effects of exogenous and endogenous SA on the photosynthetic processes under optimal and stress conditions.  相似文献   

4.
Singlet oxygen and photo-oxidative stress management in plants and algae   总被引:9,自引:0,他引:9  
Photosynthetic organisms constantly face the threat of photo-oxidative stress from fluctuating light conditions and environmental stress. Plants and algae have developed an array of defences to protect the chloroplast from reactive oxygen species. Genetic and physiological studies have shown that antioxidant responses are important to high-light acclimation, both by directly scavenging or quenching reactive oxygen intermediates and by contributing reducing power for alternative electron transport pathways and excess energy dissipation. At present, the signalling events leading to up-regulation of antioxidant defences in high light remain a mystery. Recent advances toward understanding acclimation to oxidative stress in both photosynthetic and non-photosynthetic model organisms may illuminate how plants and algae respond to high-light stress. Although the role of hydrogen peroxide in high-light acclimation has been investigated, less is known about responses to singlet oxygen, a form of reactive oxygen that poses a significant threat specifically to photosynthetic organisms. This review will discuss some intriguing new findings in that area, focusing on recent findings regarding the nature of singlet-oxygen responses in the chloroplast.  相似文献   

5.
The Portulacaceae is one of the few terrestrial plant families known to have both C(4) and Crassulacean acid metabolism (CAM) species. There may be multiple origins of the evolution of CAM within the Portulacaceae but the only clear evidence of C(4) photosynthesis is found in members of the genus Portulaca. In the Portulaca, CAM succulent tissue is overlaid with the C(4) tissue in a unique fashion where both pathways are operating simultaneously. Earlier reports have shown that the clade containing the genera Anacampseros and Grahamia may also contain C(4) photosynthetic species similar to the Portulaca, which would indicate multiple origins of C(4) photosynthesis within the family. The aim of the present study was to ascertain the true photosynthetic nature of these genera. An initial survey of the carbon isotope composition of the Anacampseros ranged from -12.6 per thousand to -24.0 per thousand, indicating very little CAM activity in some species, with other values close to the C(4) range. Anacampseros (=Grahamia) australiana which had been previously identified as a C(4) species had a carbon isotope composition value of -24.0 per thousand, which is more indicative of a C(3) species with a slight contribution of CAM activity. Other Anacampseros species with C(4)-like values have been shown to be CAM plants. The initial isotope analysis of the Grahamia species gave values in the range of -27.1 per thousand to -23.6 per thousand, placing the Grahamia species well towards the C(3) photosynthetic range. Further physiological studies indicated increased night-time CO(2) uptake with imposition of water stress, associated with a large diurnal acid fluctuation and a marked increased phosphoenolpyruvate carboxylase activity. This showed that the Grahamia species are actually facultative CAM plants despite their C(3)-like carbon isotope values. The results indicate that the Grahamia and Anacampseros species do not utilize the C(4) photosynthetic pathway. This is the first to identify that the Grahamia species are facultative CAM plants where CAM can be induced by water stress. This work supports earlier physiological work that indicates that this clade containing Anacampseros and Grahamia species comprises predominantly facultative CAM plants. This report suggests there may be only one clade which contains C(4) photosynthetic members with CAM-like characteristics.  相似文献   

6.
In nature, essential resources for organisms, such as food for animals and light, water and nutrients for plants, are usually heterogeneously distributed, even at very small scale. As a result, all organisms, particularly plants mostly sessile, have a difficulty in acquiring essential resources from their environments. Animals express various types of foraging behavior to capture heterogeneously distributed essential foods. Clonal growth ( a vegetative reproductive process where by more than one individual of identical genetic composition is formed ) provides clonal plant not only with many "mouths" at different spatial positions, but also with a large spacial movability. As a clonal plant grows in environments characterized by a small-scale resource heterogeneity, its inter ramet connection permits a resource-sharing among the connected tamers. In addition, it may also allow certain ramets to respond locally and non-locally to resousce heterogeneity. This may lead to a division of labor among the connected ramets and a selective placement of ramets in favorable micro-habitats. Together these may enhance exploitation of resource heterogeneity by clonal plants, and in turn greatly contribute to maintenance or improvement of fitness. Such a behavior of clonal plants, expressed in heterogeneous environments, is to a large extent comparable to that of animals. Therefore, it has been considered as foraging behavior in clonal plants. More recently, it has been observed that phenotypic plasticity of clonal plants, which is relevant to foraging behavior, varies among species, types of genet architecture as well as among types of plants habitats. Foraging in clonal plants and its diversity have been receiving increasingly intensive investigations.  相似文献   

7.
The photoprotective role of carotenoids in higher plants   总被引:16,自引:0,他引:16  
Carotenoids have two important roles in photosynthetic organisms. First, they act as accessory light-harvesting pigments, effectively extending the range of light absorbed by the photosynthetic apparatus. Secondly, they perform an essential photoprotective role by quenching triplet state chlorophyll molecules and scavenging singlet oxygen and other toxic oxygen species formed within the chloroplast. Only recently an additional, novel, protective role has been proposed for the carotenoid zeaxanthin, involving the dissipation of harmful excess excitation energy under stress conditions. Zeaxanthin may be formed through de novo synthesis in response to long-term environmental stress, and through the rapid enzymic de-epoxidation of the carotenoid violaxanthin (the xanthophyll cycle) in response to short-term alterations in the plant's light environment. Interspecific differences occur in the ability of plants and algae to produce zeaxanthin under stress conditions, and hence the ability to photoprotect the photosynthetic apparatus through this means varies from species to species. The ability of a plant to respond to light-mediated environmental stress by producing zeaxanthin may therefore affect, at least in part, the ability of that plant to inhabit or colonise certain habitats (e.g. sun or shade conditions).  相似文献   

8.
The occurrence of heavy metals in soils may be beneficial or toxic to the environment. The biota may require some of these elements considered essentials (like Fe, Zn, Cu or Mo) in trace quantities, but at higher concentrations they may be poisonous. Due to the difficulty in controlling environmental metal accumulation, organisms have to cope with exposure to unwanted chemical elements, specially those considered biologically nonessential. Cadmium (Cd) belongs to this latter group. The effect of Cd toxicity on plants has been largely explored regarding inhibition of growth processes and decrease of photosynthetic apparatus activity. This article reviews current knowledge of uptake, transport and accumulation of Cd in plants and gives an overview of Cd-detoxification mechanisms, Cd-induced oxidative damage and antioxidant defenses in plants. It also presents a picture of the role of reactive oxygen and nitrogen species in Cd toxicity; signalling and gene regulation are topics critically discussed. This review aspires to pinpoint new avenues of research that may contribute to a more differentiated view of the complex mechanisms underlying Cd toxicity in target tissues.  相似文献   

9.
Keren N  Aurora R  Pakrasi HB 《Plant physiology》2004,135(3):1666-1673
Cyanobacteria are key contributors to global photosynthetic productivity, and iron availability is essential for cyanobacterial proliferation. While iron is abundant in the earth's crust, its unique chemical properties render it a limiting factor for photoautotrophic growth. As compared to other nonphotosynthetic organisms, oxygenic photosynthetic organisms such as cyanobacteria, algae, and green plants need large amounts of iron to maintain functional PSI complexes in their photosynthetic apparatus. Ferritins and bacterioferritins are ubiquitously present iron-storage proteins. We have found that in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803), bacterioferritins are responsible for the storage of as much as 50% of cellular iron. Synechocystis 6803, as well as many other cyanobacterial species, have two bacterioferritins, BfrA and BfrB, in which either the heme binding or di-iron center ligating residues are absent. Purified bacterioferritin complex from Synechocystis 6803 has both BfrA and BfrB proteins. Targeted mutagenesis of each of the two bacterioferritin genes resulted in poor growth under iron-deprived conditions. Inactivation of both genes did not result in a more severe phenotype. These results support the presence of a heteromultimeric structure of Synechocystis bacterioferritin, in which one subunit ligates a di-iron center while the other accommodates heme binding. Notably, the reduced internal iron concentrations in the mutant cells resulted in a lower content of PSI. In addition, they triggered iron starvation responses even in the presence of normal levels of external iron, thus demonstrating a central role of bacterioferritins in iron homeostasis in these photosynthetic organisms.  相似文献   

10.
Reactive oxygen species (ROS) produced by an oxidative burst are an important component of the wound response in algae, vascular plants, and animals. In all taxa, ROS production is usually attributed solely to a defense‐related enzyme like NADPH‐oxidase (Nox). However, here we show that the initial, wound‐induced oxidative burst of the kelp Saccharina latissima depends on light and photosynthetic electron transport. We measured oxygen evolution and ROS production at different light levels and in the presence of a photosynthetic inhibitor, and we used spin trapping and electron paramagnetic resonance as an orthogonal method. Using an in vivo chemical probe, we provide data suggesting that wound‐induced ROS production in two distantly related and geographically isolated species of Antarctic macroalgae may be light dependent as well. We propose that electron transport chains are an important and as yet unaddressed component of the wound response, not just for photosynthetic organisms, but for animals via mitochondria as well. This component may have been obscured by the historic use of diphenylene iodonium, which inhibits not only Noxes but also photosynthetic and respiratory electron transport as well. Finally, we anticipate physiological and/or ecological consequences of the light dependence of macroalgal wound‐induced ROS since pathogens and grazers do not disappear in the dark.  相似文献   

11.
The plant circadian clock plays an important role in enhancing performance and increasing vegetative yield. Much of our current understanding of the mechanism and function of the plant clock has come from the development of Arabidopsis thaliana as a model circadian organism. Key to this rapid progress has been the development of robust circadian markers, specifically circadian-regulated luciferase reporter genes. Studies of the clock in crop species and non-model organisms are currently hindered by the absence of a simple high-throughput universal assay for clock function, accuracy and robustness. Delayed fluorescence (DF) is a fundamental process occurring in all photosynthetic organisms. It is luminescence-produced post-illumination due to charge recombination in photosystem II (PSII) leading to excitation of P680 and the subsequent emission of a photon. Here we report that the amount of DF oscillates with an approximately 24-h period and is under the control of the circadian clock in a diverse selection of plants. Thus, DF provides a simple clock output that may allow the clock to be assayed in vivo in any photosynthetic organism. Furthermore, our data provide direct evidence that the nucleus-encoded, three-loop circadian oscillator underlies rhythms of PSII activity in the chloroplast. This simple, high-throughput and non-transgenic assay could be integrated into crop breeding programmes, the assay allows the selection of plants that have robust and accurate clocks, and possibly enhanced performance and vegetative yield. This assay could also be used to characterize rapidly the role and function of any novel Arabidopsis circadian mutant.  相似文献   

12.
Methabolism of methanol in plant organisms is considered in the paper. Enzymes of consecutive oxidation of methanol and enzymes responsible for incorporation of carbon from methanol molecule to methyl groups of phospholipids, carboxylic acids and carbohydrates have been described. The peculiarity of plant organisms is in interaction of reactions of methanol transformation with pathways of photorespiration and C1-metabolism and in the capacity to use methanol carbon to form organic matter through photosynthesis. The inclusion of methanol metabolites in anabolic processes occurs at the level of formaldehyde and formiate. As a result, exogenous methanol at low concentrations can stimulate the photosynthetic efficiency of plants.  相似文献   

13.
Sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylglycerol (PG) are lipids with negative charges, distributed among membranes of chloroplasts of plants and their postulated progenitors, cyanobacteria, and also widely among membranes of anoxygenic photosynthetic bacteria. Thus, these acidic lipids are of great interest in terms of their roles in the function and evolution of the photosynthetic membranes. The physiological significance of these lipids in photosynthesis has been examined through characterization of mutants defective in their abilities to synthesize SQDG or PG, and through characterization of isolated thylakoid membranes or photosynthetic particles, the acidic lipid contents of which were manipulated in vitro, for example, on treatment with phospholipase to degrade PG. Responsibility of SQDG or PG has been clarified so far in terms of the structural and/or functional integrity of photosystems I and/or II in cyanobacterial, green algal, and higher plant species. Also implied were distinct levels of the responsibility in the different photosynthetic organisms. Extreme cases involved the indispensability of SQDG for photosynthesis and growth in two prokaryotic, photosynthetic organisms and the contribution of PG to construction of the photosystem-I trimer exclusively in cyanobacteria. Here, roles of these acidic lipids are discussed with a focus on their specificity and the evolution of photosynthetic membranes.Norihiro Sato is the recipient of the Botanical Society Award for Young Scientist, 2003.  相似文献   

14.
The basic photosynthetic apparatus is highly conserved across all photosynthetic organisms, and this conservation can be seen in both protein composition and amino acid sequence. Conservation of regulatory elements also seems possible in chloroplast genes, as many mRNA untranslated regions (UTRs) appear to have similar structural elements. The D1 protein of Photosystem II (psbA gene) is a highly conserved core reaction center protein that shows very similar regulation from cyanobacteria through higher plants. We engineered full and partial psbA genes from a diverse set of photosynthetic organisms into a psbA deficient strain of Chlamydomonas reinhardtii. Analysis of D1 protein accumulation and photosynthetic growth revealed that coding sequences and promoters are interchangeable even between anciently diverged species. On the other hand functional recognition of 5′ UTRs is limited to closely related organisms. Furthermore transformation of heterologous promoters and 5′ UTRs from the atpA, tufA and psbD genes conferred psbA mRNA accumulation but not translation. Overall, our results show that heterologous D1 proteins can be expressed and complement Photosystem II function in green algae, while RNA regulatory elements appear to be very specific and function only from closely related species. Nonetheless, there is great potential for the expression of heterologous photosynthetic coding sequences for studying and modifying photosynthesis in C. reinhardtii chloroplasts.  相似文献   

15.
The species composition and dynamics of cyanobacteria and algae inhabiting the ice of Lake Kalach (Omsk oblast) have been studied. High abundance and a low floristic similarity with phytoplankton have been discovered. Small-celled cyanobacteria and chlorococcales dominate in number of species and abundance. A new term, “cryophyton,” is proposed for photosynthetic organisms living in the ice.  相似文献   

16.
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl‐CoA‐independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection‐pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.  相似文献   

17.
The photosynthetic membranes of cyanobacteria and chloroplasts of higher plants have remarkably similar lipid compositions. In particular, thylakoid membranes of both cyanobacteria and chloroplasts are composed of galactolipids, of which monogalactosyldiacylglycerol (MGDG) is the most abundant, although MGDG biosynthetic pathways are different in these organisms. Comprehensive phylogenetic analysis revealed that MGDG synthase (MGD) homologs of filamentous anoxygenic phototrophs Chloroflexi have a close relationship with MGDs of Viridiplantae (green algae and land plants). Furthermore, analyses for the sugar specificity and anomeric configuration of the sugar head groups revealed that one of the MGD homologs exhibited a true MGDG synthetic activity. We therefore presumed that higher plant MGDs are derived from this ancestral type of MGD genes, and genes involved in membrane biogenesis and photosystems have been already functionally associated at least at the time of Chloroflexi divergence. As MGD gene duplication is an important event during plastid evolution, we also estimated the divergence time of type A and B MGDs. Our analysis indicated that these genes diverged -323 million years ago, when Spermatophyta (seed plants) were appearing. Galactolipid synthesis is required to produce photosynthetic membranes; based on MGD gene sequences and activities, we have proposed a novel evolutionary model that has increased our understanding of photosynthesis evolution.  相似文献   

18.
Fluoride is a common pollutant which occurs in various environmental matrices considered as one of the most phytotoxic pollutants. It is essential to the living organisms in trace quantities but at its higher concentration it becomes poisonous. Excess amount of fluoride in environment not only exerts its toxic effects on human beings and animals but also on plants. Toxicological impacts of fluoride on plants have been largely debated due to reduction of growth parameters, inhibition of metabolic activities and decreased photosynthetic activity. The signs of fluoride impacts on plants may be severe, acute or chronic and toxicity of fluoride depends on dose, frequency of exposure, duration and genotype of plant. This article overviews understanding of transport, uptake and fluoride accumulation in plants and provide insights into the fluoride-induced oxidative stress and regulatory mechanisms to cope up with it. The main objective of this article is to prospect new research avenues to unravel the mechanisms explaining fluoride toxicity in various plant species.  相似文献   

19.
Chloroplasts have been isolated in high yield from several gymnosperms and from two deciduous trees. The organization of chlorophyll in the chloroplasts of these woody species is basically similar to that in angiosperm crop plants and green algae. The tree chloroplasts contain two chlorophyll proteins, the P700-chlorophyll a-protein and the major light-harvesting chlorophyll a/b-protein, the size, spectral characteristics, and function of which are the same as the equivalent complexes previously isolated from other classes of green plants. All the gymnosperms have chlorophyll/P700 ratios (photosynthetic unit sizes) 1.6 to 3.8 times larger than that typically found in crop plants; the deciduous trees have units of intermediary size. The presence of fewer but larger photosynthetic units in the woody species can partially account for their lower photosynthetic rate and explains why their photosynthetic processes saturate at lower light intensities. Chloroplasts of shade needles have large units containing a greater proportion of the light-harvesting chlorophyll a/b-protein than those of sun needles.  相似文献   

20.
Plants have evolved several mechanisms for getting rid of excess energy in photosynthetic membranes, some of which involve isoprenoid compounds. In all photosynthetic organisms, the carotenoids beta-carotene and zeaxanthin, and tocopherols serve an important photoprotective role, either by dissipating excess excitation energy as heat or by scavenging reactive oxygen species (ROS) and suppressing lipid peroxidation. Isoprene and some monoterpenes, diterpenes and other carotenoids also occur in some plant lineages. Compelling evidence indicates that these non-ubiquitous isoprenoids might be particularly relevant in adapting plants to adverse climatic conditions by serving as additional and/or alternative protection mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号