首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We present an optimized high-throughput method for the characterization of 2-aminobenzamide (2-AB)-labeled N-glycans from recombinant immunoglobulin G (rIgG). This method includes an optimized sample preparation protocol involving microwave-assisted deglycosylation in conjunction with an automated sample cleanup strategy and a rapid resolution reverse-phase high-performance liquid chromatography (RRRP-HPLC) separation of labeled N-glycans. The RRRP-HPLC method permits generation of a comprehensive glycan profile using fluorescence detection in 45 min. In addition, the profiling method is directly compatible with electrospray ionization mass spectrometry (ESI-MS), allowing immediate and sensitive characterization of the glycan moiety by intact MS and tandem MS (MS/MS) fragmentation. We conservatively estimate an efficiency gain of fourfold with respect to the throughput capabilities of this optimized method as compared with traditional protocols (overnight deglycosylation, sample cleanup by graphitized carbon or cellulose cartridge, high-pH anion exchange chromatography, fraction collection, and processing for matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] MS analysis) for a single sample. Even greater gains are achieved when processing of multiple samples is considered.  相似文献   

2.
Glycosylation is a critical attribute for development and manufacturing of therapeutic monoclonal antibodies (mAbs) in the pharmaceutical industry. Conventional antibody glycan analysis is usually achieved by the 2-aminobenzamide (2-AB) hydrophilic interaction liquid chromatography (HILIC) method following the release of glycans. Although this method produces satisfactory results, it has limited use for screening a large number of samples because it requires expensive reagents and takes several hours or even days for the sample preparation. A simple and rapid glycan analysis method was not available. To overcome these constraints, we developed and compared 2 ultrafast methods for antibody glycan analysis (UMAG) that involve the rapid generation and purification of glycopeptides in either organic solvent or aqueous buffer followed by label-free quantification using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Both methods quickly yield N-glycan profiles of test antibodies similar to those obtained by the 2-AB HILIC-HPLC method. In addition, the UMAG method performed in aqueous buffer has a shorter assay time of less than 15 min, and enables high throughput analysis in 96-well PCR plates with minimal sample handling. This method, the fastest, and simplest as reported thus far, has been evaluated for glycoprofiling of mAbs expressed under various cell culture conditions, as well as for the evaluation of antibody culture clones and various production batches. Importantly the method sensitively captured changes in glycoprofiles detected by traditional 2-AB HILIC-HPLC or HILIC-UPLC. The simplicity, high speed, and low cost of this method may facilitate basic research and process development for novel mAbs and biosimilar products.  相似文献   

3.
Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies.  相似文献   

4.
A major difficulty with isolating enzymatically or chemically released oligosaccharides from large-scale glycoprotein deglycosylation reactions is the time-consuming chromatography, desalting, and concentration steps required to prepare a glycan fraction of manageable proportions. To overcome these time and preparative chromatography equipment requirements, we have developed a rapid organic solvent precipitation/extraction procedure that allows sequential isolation of endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96)-released high-mannose and hybrid, peptide-N(4)-(N-acetyl-beta-glucosaminyl) Asn amidase (EC 3.5.1. 52)-released complex, and beta-eliminated O-linked glycans without the need for intermediate chromatography, desalting, or concentration steps. The method involves precipitation of protein and released glycans at -20 degrees C in 80% acetone and extraction of the glycans from the pellet with 60% aqueous methanol after each deglycosylation step. Three pools of essentially salt- and detergent-free oligosaccharides (high-mannose/hybrid, complex, and O-linked) can be isolated in a high yield in 4 days with this protocol, which has been extensively tested using bovine RNase B, human bile salt-stimulated lipase expressed in Pichia pastoris, hen ovalbumin, bovine fetuin, bovine thyroglobulin, and several invertase preparations from wild-type and mutant yeast strains.  相似文献   

5.
One of the most widely used methods for glycan analysis is fluorescent labeling of released glycans followed by hydrophilic interaction chromatography–(ultra-)high-performance liquid chromatography [HILIC–(U)HPLC]. Here, we compare the data obtained by (U)HPLC–fluorescence (FLR) coupled to electrospray ionization–mass spectrometry (ESI–MS) for procainamide and 2-aminobenzamide (2-AB)-labeled N-glycans released from human immunoglobulin G (IgG). Fluorescence profiles from procainamide show comparable chromatographic separation to those obtained for 2-AB but gave higher fluorescence intensity as well as significantly improved ESI efficiency (up to 30 times that of 2-AB). Thus, labeling with procainamide increases the ability to identify minor glycan species that may have significant biological activity.  相似文献   

6.
Mannose-6-phosphate (M-6-P) glycan analysis is important for quality control of therapeutic enzymes for lysosomal storage diseases. Here, we found that the analysis of glycans containing two M-6-Ps was highly affected by the hydrophilicity of the elution solvent used in high-performance liquid chromatography (HPLC). In addition, the performances of three fluorescent tags—2-aminobenzoic acid (2-AA), 2-aminobenzamide (2-AB), and 3-(acetyl-amino)-6-aminoacridine (AA-Ac)—were compared with each other for M-6-P glycan analysis using HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The best performance for analyzing M-6-P glycans was shown by 2-AA labeling in both analyses.  相似文献   

7.
Analysis of 2-aminobenzamide-labeled oligosaccharides requires removal of excess labeling reagents before chromatography. Manual cleanup is time-consuming and not optimal for routine analysis, so an on-line solid-phase extraction was developed. Labeled oligosaccharides are trapped on an amide phase in a small guard column, the excess reagents are washed away, and then the sample is transferred to the analytical column for analysis. The on-line protocol shortened the sample preparation time and has been applied for the analysis of oligosaccharides and N-glycans released from glycoproteins.  相似文献   

8.
Each year the production of seasonal influenza vaccines requires antigen standards to be available for the potency assessment of vaccine batches. These are calibrated and assigned a value for haemagglutinin (HA) content. The calibration of an antigen standard is carried out in a collaborative study amongst a small number of national regulatory laboratories which are designated by WHO as Essential Regulatory Laboratories (ERLs) for the purposes of influenza vaccine standardisation. The calibration involves two steps; first the determination of HA protein in a primary liquid standard by measurement of total protein in a purified influenza virus preparation followed by determination of the proportion of HA as determined by PAGE analysis of the sample; and second, the calibration of the freeze-dried reference antigen against the primary standard by single radial immunodiffusion (SRD) assay. Here we describe a collaborative study to assess the effect of adding a deglycosylation step prior to the SDS-PAGE analysis for the assessment of relative HA content. We found that while the final agreed HA value of the samples tested was not significantly different with or without deglycosylation, the deglycosylation step greatly improved between-laboratory agreement.  相似文献   

9.
Protein A chromatography is a critical and ‘gold‐standard’ step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI‐TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back‐bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D‐PAGE was then used to determine individual components associated with resin back‐bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1037–1044, 2012  相似文献   

10.
R K Wilson  C Chen  L Hood 《BioTechniques》1990,8(2):184-189
A high-throughput method for the preparation of single-stranded template DNA, which is suitable for sequence analysis using fluorescent labeling chemistry, is described here. In this procedure, the asymmetric polymerase chain reaction is employed to amplify recombinant plasmid or bacteriophage DNA directly from colonies or plaques. The use of amplification primers located at least 200 base pairs 5' to the site of sequencing primer annealing removes the need for extensive purification of the asymmetric polymerase chain reaction product. Instead, the single-stranded product DNA is purified by a simple isopropanol precipitation step and then directly sequenced using fluorescent dye-labeled oligonucleotides. This method significantly reduces the time and labor required for template preparation and improves fluorescent DNA sequencing strategies by providing a much more uniform yield of single-stranded DNA.  相似文献   

11.
The analysis of protein-linked glycans is of increasing importance, both in basic glycobiological research and during the production process of glycoprotein pharmaceuticals. In many cases, the amount of glycoprotein available for typing the glycans is very low. This, combined with the high branching complexity typical for this class of compounds, makes glycan typing a challenging task. We present here methodology allowing the medium-throughput analysis of N-glycans derived from low picomole amounts of glycoproteins using the standard DNA-sequencing equipment available in any life sciences laboratory. The high sensitivity of the overall analytical process (from glycoprotein to results) is obtained using state-of-the-art deglycosylation procedures combined with a highly efficient and reproducible novel postderivatization cleanup step involving Sephadex G10 packed 96-well filterplates. All sample preparation steps (enzymatic deglycosylation with PNGase F, desalting, derivatization with 8-amino-1,3,6-pyrenetrisulfonic acid, and postderivatization cleanup) are performed using 96-well-based plates. This integrated sample preparation scheme is also compatible with capillary electrophoresis and MALDI-TOF-MS platforms already in use in some glycobiology labs and anticipates the higher throughput that will be offered by the capillary-array-based DNA sequencers currently penetrating the market. The described technology should bring high-performance glycosylation analysis within reach of each life sciences lab and thus help expedite the pace of discovery in the field of glycobiology.  相似文献   

12.
[目的]建立流式微球一步法快速免疫检测马铃薯A病毒(PVA)的新方法.[方法]以荧光微球为反应载体,通过在微球表面进行双抗夹心免疫反应形成微球-捕获抗体-PVA-标记FITC检测抗体的复合物,利用流式细胞仪荧光检测系统收集荧光信号.[结果]通过实验优化检测条件,最佳捕获抗体工作浓度为4μg/mL、最佳检测抗体工作浓度为1:25倍稀释、最佳反应时间为2h;与马铃薯Y病毒、莴苣花叶病毒、番茄环斑病毒等均未出现交叉反应;阳性样品经64倍稀释后依然可检出,检测灵敏度是传统微孔板ELISA的4倍.[结论]流式微球一步法能灵敏、快速、简便的检测马铃薯A病毒.  相似文献   

13.
《MABS-AUSTIN》2013,5(6):568-576
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.  相似文献   

14.
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.Key words: monoclonal antibody, glycosylation, stability, liquid chromatography-mass spectroscopy, Fourier transform infrared, fluorescence spectroscopy, size-exclusion chromatography, differential scanning calorimetry  相似文献   

15.
A new method for labeling antibodies which involves selenol-catalyzed reduction of native disulfide bonds in antibodies to generate thiol groups, which then are labeled using thiol-reactive reagents, is described. The reduction and labeling steps of this rapid procedure are carried out in one vessel, without requiring any separation step to remove the reductant before labeling. It results in a quantitative and homogenous incorporation of about seven labeled groups per antibody molecule in less than 5 min. All reagents used are commercially available-selenocystamine (catalyst precursor), dithiothreitol or tris(2-carboxyethyl)phosphine (reductant), and thiol-reactive labeling reagents such as biotin-poly(ethylene oxide)-maleimide. This method is broadly applicable for labeling proteins such as immunoglobulins with reducible disulfide bonds, whose reduction and labeling does not result in a significant loss of activity. Biotinylated murine antibodies (anti-phosphotyrosine and anti-EGF receptor) prepared by this reduced-disulfide labeling method perform comparably or better than amino-group biotinylated antibodies in applications such as enzyme-linked immunosorbent assay, immunohistochemistry, and immunoprecipitation. This reduced-disulfide labeling method is superior to amino-group labeling methods because it is not inhibited by the presence of amines in solution, as demonstrated by the biotinylation of an antibody in a hybridoma culture supernatant containing amino acids and serum proteins.  相似文献   

16.
应用直接荧光标记和免疫荧光标记显微术显示了几种原生动物纤毛虫(如尾草履虫、大尾柱虫、阔口游仆虫)的细胞微管骨架,并据结果提出了用所述方法制备标本时需注意的几个方面:对游仆虫,可以忽略某些步骤;对大尾柱虫各种药品的浓度以及处理时间以较小为宜。  相似文献   

17.
Plant tissues contain large amounts of secondary compounds that significantly interfere with protein extraction and 2DE analysis. Thus, sample preparation is a crucial step prior to 2DE in plant proteomics. This tutorial highlights the guidelines that need to be followed to perform an adequate total protein extraction before 2DE in plant proteomics. We briefly describe the history, development, and feature of major sample preparation methods for the 2DE analysis of plant tissues, that is, trichloroacetic acid/acetone precipitation and phenol extraction. We introduce the interfering compounds in plant tissues and the general guidelines for tissue disruption, protein precipitation and resolubilization. We describe in details the advantages, limitations, and application of the trichloroacetic acid/acetone precipitation and phenol extraction methods to enable the readers to select the appropriate method for a specific species, tissue, or cell type. The current applications of the sample preparation methods in plant proteomics in the literature are analyzed. A comparative proteomic analysis between male and female plants of Pistacia chinensis is used as an example to represent the sample preparation methodology in 2DE‐based proteomics. Finally, the current limitations and future development of these sample preparation methods are discussed. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP17).  相似文献   

18.
The development of multiplex and flexible tests allowing the simultaneous analysis of pathogens presenting a transfusional risk is a real challenge. Current miniaturized platforms have been particularly marked by microarrays. These microsystems allow the optical detection of hundreds of individual targets simultaneously. However, they suffer from a low sensitivity and their combination with a preliminary target amplification step such as PCR is necessary. The variable level of expression of the infectious genomes of interest and their large diversity complicate multiplex amplification. Finally simultaneous analysis of multiple blood-transmitted agents poses numerous difficulties in diagnosis that remain unresolved by currently available technologies.Until recently, scientific and technological advances for pathogen detection have focused on target amplification and optical detection steps. Today, sample preparation is recognized as a critical area to improve. Nanotechnologies can reach the single-cell or molecular scale and consequently overcome several current technological obstacles. They offer new technological tools for improving sample preparation but also for avoiding target amplification and the current fluorescent labeling. The combination of nano-objects and nano-systems in current technologies offers new possibilities for potential applications in the detection of infectious agents.  相似文献   

19.
Most covalent protein labeling schemes require a choice between visual and affinity properties, requiring the use of multiple fusion systems where both attributes are needed. While not disruptive at the single experiment level, this detail becomes critical when addressing high-throughput experimentation. Here we develop a uniform site-specific protein tag for use in both fluorescent and affinity screening. Covalent protein tagging with a stilbene reporter via promiscuous phosphopantetheinyltransferase (PPTase) modification enables a switchable, antibody-elicited fluorescent response in solution or on affinity resin. For demonstration purposes, VibB, a natural fusion protein harboring a carrier protein domain, was labeled with a stilbene tag through PPTase modification with a stilbene-labeled coenzyme A analogue. Analysis of the resulting stilbene-tagged VibB was accomplished by fluorescent and Western blot analysis with anti-stilbene monoclonal antibody EP2-19G2. The illustration of this method for general application to fusion protein analysis offers a dual role in assisting both solution-based fluorescent analysis and surface-based affinity detection and purification.  相似文献   

20.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号