首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
According to a widely accepted theory on barley domestication, wild barley (Hordeum vulgare ssp. spontaneum) from the Fertile Crescent is the progenitor of all cultivated barley (H. vulgare ssp. vulgare). To determine whether barley has undergone one or more domestication events, barley accessions from three continents have been studied (a) using 38 nuclear SSR (nuSSRs) markers, (b) using five chloroplast SSR (cpSSR) markers yielding 5 polymorphic loci and (c) by detecting the differences in a 468 bp fragment from the non-coding region of chloroplast DNA. A clear separation was found between Eritrean/Ethiopian barley and barley from West Asia and North Africa (WANA) as well as from Europe. The data from chloroplast DNA clearly indicate that the wild barley (H. vulgare ssp. spontaneum) as it is found today in the “Fertile Crescent” might not be the progenitor of the barley cultivated in Eritrea (and Ethiopia). Consequently, an independent domestication might have taken place at the Horn of Africa. Jihad Orabi and Gunter Backes have contributed equally to this work.  相似文献   

2.
Remains of barley (Hordeum vulgare) grains found at archaeological sites in the Fertile Crescent indicate that about 10,000 years ago the crop was domesticated there from its wild relative Hordeum spontaneum. The domestication history of barley is revisited based on the assumptions that DNA markers effectively measure genetic distances and that wild populations are genetically different and they have not undergone significant change since domestication. The monophyletic nature of barley domestication is demonstrated based on allelic frequencies at 400 AFLP polymorphic loci studied in 317 wild and 57 cultivated lines. The wild populations from Israel-Jordan are molecularly more similar than are any others to the cultivated gene pool. The results provided support for the hypothesis that the Israel-Jordan area is the region in which barley was brought into culture. Moreover, the diagnostic allele I of the homeobox gene BKn-3, rarely but almost exclusively found in Israel H. spontaneum, is pervasive in western landraces and modern cultivated varieties. In landraces from the Himalayas and India, the BKn-3 allele IIIa prevails, indicating that an allelic substitution has taken place during the migration of barley from the Near East to South Asia. Thus, the Himalayas can be considered a region of domesticated barley diversification.  相似文献   

3.
One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA.  相似文献   

4.
Phenotypic variation in natural populations is the outcome of the joint effects of environmentally induced adaptations and neutral processes on the genetic architecture of quantitative traits. In this study, we examined the role of adaptation in shaping wild barley phenotypic variation along different environmental gradients. Detailed phenotyping of 164 wild barley (Hordeum spontaneum) accessions from Israel (of the Barley1K collection) and 18 cultivated barley (H. vulgare) varieties was conducted in common garden field trials. Cluster analysis based on phenotypic data indicated that wild barley in this region can be differentiated into three ecotypes in accordance with their ecogeographical distribution: north, coast and desert. Population differentiation (QST) for each trait was estimated using a hierarchical Bayesian model and compared to neutral differentiation (FST) based on 42 microsatellite markers. This analysis indicated that the three clusters diverged in morphological but not in reproductive characteristics. To address the issue of phenotypic variation along environmental gradients, climatic and soil gradients were compared with each of the measured traits given the geographical distance between sampling sites using a partial Mantel test. Flowering time and plant growth were found to be differentially correlated with climatic and soil characteristic gradients, respectively. The H. vulgare varieties were superior to the H. spontaneum accessions in yield components, yet resembled the Mediterranean types in vegetative characteristics and flowering time, which may indicate the geographical origin of domesticated barley.  相似文献   

5.
Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.  相似文献   

6.
Gene resequencing and association analysis present new opportunities to study the evolution of adaptive traits in crop plants. Here we apply these tools to an extensive set of barley accessions to identify a component of the molecular basis of the flowering time adaptation, a trait critical to plant survival. Using an association-based study to relate variation in flowering time to sequence-based polymorphisms in the Ppd-H1 gene, we identify a causative polymorphism (SNP48) that accounts for the observed variation in barley flowering time. This polymorphism also shows latitude-dependent geographical distribution, consistent with the expected clinal variation in phenotype with the nonresponsive form predominating in the north. Networks, genealogies, and phylogenetic trees drawn for the Ppd-H1 haplotypes reveal population structure both in wild barley and in domesticated barley landraces. The spatial distribution of these population groups indicates that phylogeographical analysis of European landraces can provide information relevant to the Neolithic spread of barley cultivation and also has implications for the origins of domesticated barley, including those with the nonresponsive ppd-H1 phenotype. Haplotypes containing the nonresponsive version of SNP48 are present in wild barley accessions, indicating that the nonresponsive phenotype of European landraces originated in wild barley. The wild accessions whose nonresponsive haplotypes are most closely similar to those of landraces are found in Iran, within a region suggested as an area for domestication of barley east of the Fertile Crescent but which has previously been thought to have contributed relatively little to the diversity of European cultivars.  相似文献   

7.
Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P < 0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/heat tolerance being the most important ones.  相似文献   

8.
Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.  相似文献   

9.
Rhynchosporium commune was recently introduced into the Middle East, presumably with the cultivated host barley (Hordeum vulgare). Middle Eastern populations of R. commune on cultivated barley and wild barley (H. spontaneum) were genetically undifferentiated and shared a high proportion of multilocus haplotypes. This suggests that there has been little selection for host specialization on H. spontaneum, a host population often used as a source of resistance genes introduced into its domesticated counterpart, H. vulgare. Low levels of pathogen genetic diversity on H. vulgare as well as on H. spontaneum, indicate that the pathogen was introduced recently into the Middle East, perhaps through immigration on infected cultivated barley seeds, and then invaded the wild barley population. Although it has not been documented, the introduction of the pathogen into the Middle East may have a negative influence on the biodiversity of native Hordeum species.  相似文献   

10.
The variation in length of the intergenic spacer (IGS) region of the ribosomal DNA repeat unit was examined in 63 accessions of wild barley, Hordeum spontaneum, and seven accessions of cultivated barley, Hordeum vulgare. The accessions of wild barley were collected from ecologically diverse climatic and edaphic microsites in Israel, and the barley cultivars were those grown in India. Sixteen spacer-length variants (slvs) observed in the present study presumably belonged to two known rDNA loci (Rrn1 and Rrn2). Each accession had one or more variants, which together represented the rDNA phenotype. The rDNA phenotypes of wild barley accessions were widely diverse and differed substantially from those of cultivated barley. The slv phenotypes and the corresponding alleles were shown to be largely correlated with different climatic, edaphic and ecogeographical microsites and niches (the ”Evolution Canyon” at Lower Nahal Oren, Mount Carmel; and Tabigha, Eastern Upper Galilee Mountains), so that a particular rDNA phenotype of an accession could be used to predict the climate and soil to which the accession belonged. This sharp microsite ecogeographic variation in ribosomal DNA appears adaptive in nature, and is presumably driven by climatic and edaphic natural selection. Received: 1 March 2001 / Accepted: 21 May 2001  相似文献   

11.
Wild and cultivated barleys show similar affinities for mineral nitrogen   总被引:3,自引:0,他引:3  
Arnold J. Bloom 《Oecologia》1985,65(4):555-557
Summary The kinetics of net ammonium influx were very similar among several cultivars of barley (Hordeum vulgare) and several accessions of the wild taxa H.v. spontaneum and H. jubatum. For net nitrate influx, variation was greater among accessions than among species; accessions from warmer climates had faster rates than those from colder climates. These data indicate that domestication of barley has not reduced its affinity for mineral nitrogen.  相似文献   

12.
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high‐quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high‐confidence protein‐coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single‐copy plant genes, illustrating that the gene‐containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1‐specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.  相似文献   

13.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

14.
Genetic diversity among wild and cultivated barley as revealed by RFLP   总被引:4,自引:0,他引:4  
Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp. spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns was estimated and the barley lines clustered into five groups reflecting geographical origin. The geographical groups of land-race lines showed less intragroup variation than the geographical groups of spontaneum lines. The group of European varieties, representing large variation in agronomic traits, showed an intermediate level. The proportion of gene diversity residing among geographical groups (FST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups.  相似文献   

15.
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.  相似文献   

16.
Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.  相似文献   

17.
应用微卫星标记研究西藏野生大麦的遗传多样性   总被引:9,自引:0,他引:9  
以西藏不同地区的106份野生大麦为材料,其中包括50份野生二棱大麦(HS),27份野生瓶形大麦(HL)和29份野生六棱大麦(HA),用Liu等(1996)发表的SSR连锁图的每个连锁群的两个臂的不同位置上选取3~5个共30个SSR标记,研究了西藏3类野生大麦的遗传多样性。结果表明,这3类野生大麦在遗传组成及等位变异频率分布上存在着明显的遗传分化。在总样本中,共检测到229个等位变异,平均每个SSR位点检测到7.6个等位变异,其中70个为这3类野生大麦间共同的等位变异,等位变异数在这3类野生大麦间有明显的差异,亚种问的遗传多样性明显高于亚种内的遗传多样性。其遗传多样性大小顺序为HS〉HL〉HA。聚类分析表明,野生二棱大麦、野生六棱大麦分别聚在不同的两类,而野生瓶形大麦中各有约50%的材料分别聚在这两类。根据本研究及前人研究结果,我们认为中国栽培大麦是从野生二棱大麦经野生瓶形大麦向野生六棱大麦进化的。该结果支持了栽培大麦起源的“野生二棱大麦单系起源论”的观点。  相似文献   

18.
The origin of six-rowed cultivated barley was studied using a DNA marker cMWG699 closely linked to the vrs1 locus. Restriction patterns of the PCR-amplified product of the cMWG699 locus were examined in 280 cultivated (Hordeum vulgare ssp. vulgare) and 183 wild (H. vulgare ssp. spontaneum) barleys. Nucleotide sequences of the PCR products were also examined in selected accessions. Six-rowed cultivated barleys were divided into two distinct groups, types I and II. Type I six-rowed cultivated barley was distributed widely while type II six-rowed cultivated barley was found only in the Mediterranean region. The type I sequence was also found in a wild barley accession from Turkmenistan whereas the type II sequence was also found in a two-rowed cultivated barley from North Africa and a wild barley from Morocco. These results suggested that the six-rowed type I and II barleys were derived from two-rowed type I and II barleys, respectively, by independent mutations at the vrs1 locus. Received: 3 November 2000 / Accepted: 17 April 2001  相似文献   

19.
The least ambiguous genetic markers are those based on completely characterized DNA sequence polymorphisms. Unfortunately, assaying allele states by allele sequencing is slow and cumbersome. The most desirable type of genetic marker would be unambiguous, inexpensive to assay and would be assayable singly or in parallel with hundreds of other markers (multiplexable). In this report we sequenced alleles at 54 barley (Hordeum vulgare ssp. vulgare) loci, 38 of which contained single-nucleotide polymorphisms (SNPs). Many of these 38 loci contained multiple polymorphisms, and a total of 112 polymorphisms were scored in five barley genotypes. The polymorphism data set was analyzed both by using the individual mutations as cladistic characters and by reducing data for each locus to haplotypes. We compared the informativeness of these two approaches by consensus tree construction and bootstrap analysis. Both approaches provided similar results. Since some of the loci sequenced contained insertion/deletion events and multiple point mutations, we thought that these multiple-mutated loci might represent old alleles that predated the divergence of barley from H. spontaneum. We evaluated sequences from a sample of H. spontaneum accessions from the Eastern Mediterranean, and observed similar alleles present in both cultivated barley and H. spontaneum, suggesting either multiple domestication events or multiple transfers of genes between barley and its wild ancestor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号