首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNA vector-encoded Tough Decoy (TuD) miRNA inhibitor is attracting increased attention due to its high efficiency in miRNA suppression. The current methods used to construct TuD vectors are based on synthesizing long oligonucleotides (~90 mer), which have been costly and problematic because of mutations during synthesis. In this study, we report a PCR-based method for the generation of double Tough Decoy (dTuD) vector in which only two sets of shorter oligonucleotides (< 60 mer) were used. Different approaches were employed to test the inhibitory potency of dTuDs. We demonstrated that dTuD is the most efficient method in miRNA inhibition in vitro and in vivo. Using this method, a mini dTuD library against 88 human miRNAs was constructed and used for a high-throughput screening (HTS) of AP-1 pathway-related miRNAs. Seven miRNAs (miR-18b-5p, -101-3p, -148b-3p, -130b-3p, -186-3p, -187-3p and -1324) were identified as candidates involved in AP-1 pathway regulation. This novel method allows for an accurate and cost-effective generation of dTuD miRNA inhibitor, providing a powerful tool for efficient miRNA suppression in vitro and in vivo.  相似文献   

2.
3.
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. RESULTS: Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146 overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cells types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p). CONCLUSION: The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.  相似文献   

4.
Secreted microRNAs (miRNAs) enclosed within extracellular vesicles (EVs) play a pivotal role in intercellular communication by regulating recipient cell gene expression and affecting target cell function. Here, we report the isolation of three distinct EV subtypes from the human colon carcinoma cell line LIM1863 – shed microvesicles (sMVs) and two exosome populations (immunoaffinity isolated A33-exosomes and EpCAM-exosomes). Deep sequencing of miRNA libraries prepared from parental LIM1863 cells/derived EV subtype RNA yielded 254 miRNA identifications, of which 63 are selectively enriched in the EVs - miR-19a/b-3p, miR-378a/c/d, and miR-577 and members of the let-7 and miR-8 families being the most prominent. Let-7a-3p*, let-7f-1-3p*, miR-451a, miR-574-5p*, miR-4454 and miR-7641 are common to all EV subtypes, and 6 miRNAs (miR-320a/b/c/d, miR-221-3p, and miR-200c-3p) discern LIM1863 exosomes from sMVs; miR-98-5p was selectively represented only in sMVs. Notably, A33-Exos contained the largest number (32) of exclusively-enriched miRNAs; 14 of these miRNAs have not been reported in the context of CRC tissue/biofluid analyses and warrant further examination as potential diagnostic markers of CRC. Surprisingly, miRNA passenger strands (star miRNAs) for miR-3613-3p*, -362-3p*, -625-3p*, -6842-3p* were the dominant strand in A33-Exos, the converse to that observed in parental cells. This finding suggests miRNA biogenesis may be interlinked with endosomal/exosomal processing.  相似文献   

5.
Malignant melanoma is an aggressive form of skin cancer with poor prognosis. Despite improvements in awareness and prevention of this disease, its incidence is rapidly increasing. MicroRNAs (miRNAs) are a class of small RNA molecules that regulate cellular processes by repressing messenger RNAs (mRNAs) with partially complementary target sites. Several miRNAs have already been shown to attenuate cancer phenotypes, by limiting proliferation, invasiveness, tumor angiogenesis, and stemness. Here, we employed a genome-scale lentiviral human miRNA expression library to systematically survey which miRNAs are able to decrease A375 melanoma cell viability. We highlight the strongest inhibitors of melanoma cell proliferation, including the miR-15/16, miR-141/200a and miR-96/182 families of miRNAs and miR-203. Ectopic expression of these miRNAs resulted in long-term inhibition of melanoma cell expansion, both in vitro and in vivo. We show specifically miR-16, miR-497, miR-96 and miR-182 are efficient effectors when introduced as synthetic miRNAs in several melanoma cell lines. Our study provides a comprehensive interrogation of miRNAs that interfere with melanoma cell proliferation and viability, and offers a selection of miRNAs that are especially promising candidates for application in melanoma therapy.  相似文献   

6.
Of the over 200 identified mammalian microRNAs (miRNAs), only a few have known biological activity. To gain a better understanding of the role that miRNAs play in specific cellular pathways, we utilized antisense molecules to inhibit miRNA activity. We used miRNA inhibitors targeting miR-23, 21, 15a, 16 and 19a to test efficacy of antisense molecules in reducing miRNA activity on reporter genes bearing miRNA-binding sites. The miRNA inhibitors de-repressed reporter gene activity when a miRNA-binding site was cloned into its 3′-untranslated region. We employed a library of miRNA inhibitors to screen for miRNA involved in cell growth and apoptosis. In HeLa cells, we found that inhibition of miR-95, 124, 125, 133, 134, 144, 150, 152, 187, 190, 191, 192, 193, 204, 211, 218, 220, 296 and 299 caused a decrease in cell growth and that inhibition of miR-21 and miR-24 had a profound increase in cell growth. On the other hand, inhibition of miR-7, 19a, 23, 24, 134, 140, 150, 192 and 193 down-regulated cell growth, and miR-107, 132, 155, 181, 191, 194, 203, 215 and 301 increased cell growth in lung carcinoma cells, A549. We also identified miRNA that when inhibited increased the level of apoptosis (miR-1d, 7, 148, 204, 210, 216 and 296) and one miRNA that decreased apoptosis (miR-214) in HeLa cells. From these screens, we conclude that miRNA-mediated regulation has a complexity of cellular outcomes and that miRNAs can be mediators of regulation of cell growth and apoptosis pathways.  相似文献   

7.
Alveolar rhabdomyosarcoma (RMA) and malignant rhabdoid tumor (MRT) have a frequent metastatic spread and a poor prognosis. Aberrant miRNA expression is often found in metastatic tumors. The aim of this study was to identify specific miRNA expression patterns in these tumors. We analyzed the expression of miRNAs in RMA and MRT in tissue samples and in the rhabdomyosarcoma (RMS) cell lines (Rh30 and RD). Selected target miRNAs were modulated with mimic or inhibitor oligonucleotides. Functional analysis was monitored by flow cytometry and migration assays. A set of 107 differentially expressed miRNAs showed tissue-specific clustering of RMA and MRT. Comparison with the Sarcoma microRNA Expression Database revealed RMA- and MRT-specific miRNAs. Metastatic invasion associated miRNA miR-9? was overexpressed in RMA. miR-200c—inhibiting migration—was lower expressed in RMA than in MRT. Transient transfection of RMS cells with a miR-200c mimic and miR-9* inhibitor did neither increase the expression of the known target E-cadherin nor decrease migration. Expression of E-cadherin could be induced in RD cells using decitabine, but demethylation did not influence cell migration. Despite a comparable high rate of metastatic invasion pediatric RMA and MRT show a different pattern of miRNA expression possibly allowing risk stratification.  相似文献   

8.
The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed-batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed-batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR-1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose-dependent manner during transient batch cultivation. Cells stably overexpressing miR-1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in-house medium 1. However, when the cells stably overexpressing miR-1 were cultivated in fed-batch mode using in-house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.  相似文献   

9.
Accumulating data have shown the involvement of microRNAs (miRNAs) in endometriosis pathogenesis. In this study, we used a novel approach to determine the endometriotic lesion-specific miRNAs by high-throughput small RNA sequencing of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissues together with eutopic endometria of the same patients. We found five miRNAs specific to epithelial cells – miR-34c, miR-449a, miR-200a, miR-200b and miR-141 showing significantly higher expression in peritoneal endometriotic lesions compared to healthy peritoneal tissues. We also determined the expression levels of miR-200 family target genes E-cadherin, ZEB1 and ZEB2 and found that the expression level of E-cadherin was significantly higher in endometriotic lesions compared to healthy tissues. Further evaluation verified that studied miRNAs could be used as diagnostic markers for confirming the presence of endometrial cells in endometriotic lesion biopsy samples. Furthermore, we demonstrated that the miRNA profile of peritoneal endometriotic lesion biopsies is largely masked by the surrounding peritoneal tissue, challenging the discovery of an accurate lesion-specific miRNA profile. Taken together, our findings indicate that only particular miRNAs with a significantly higher expression in endometriotic cells can be detected from lesion biopsies, and can serve as diagnostic markers for endometriosis.  相似文献   

10.
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of miRNAs in a global key pest Plutella xylostella as well as comparative analysis of miRNA expression profile of the insect in association with parasitization by Diadegma semiclausum. Combining the deep sequencing data and bioinformatics, 235 miRNAs were identified from P. xylostella. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive second instar larvae of P. xylostella. Bantam, miR-276*, miR-10, miR-31 and miR-184 were detected as five most abundant miRNAs in both libraries and 96 miRNAs were identified that were differentially expressed after parasitization. Bantam*, miR-184 and miR-281* were significantly down-regulated and two miRNAs miR-279b and miR-2944b* were highly induced in parasitized larvae. Interestingly, high copy numbers and differential expression of several miRNA passenger strands (miRNA*) suggest their potential roles in host-parasitoid interaction. In conclusion, expression profiling of miRNAs provided insights into their possible involvement in insect immune response to parasitism and offer an important resource for further studies.  相似文献   

11.
12.
13.
MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the “RIP-Chip” assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs.  相似文献   

14.
15.
In the intestine, dysregulation of miRNA is associated with inflammation, disruption of the gastrointestinal barrier, and the onset of gastrointestinal disorders. This study identifies miRNAs involved in the maintenance of intercellular junctions and barrier integrity. For the functional identification of barrier affecting miRNAs, we took advantage of the barrier-enforcing effects of the probiotic bacterium Escherichia coli Nissle 1917 (EcN) which can be monitored by enhanced transepithelial resistance (TER). miRNA-profiling of T84 monolayers prior and after co-incubation with EcN revealed for the first time differentially regulated miRNAs (miR-203, miR-483-3p, miR-595) targeting tight junction (TJ) proteins. Using real-time PCR, Western blotting and specific miRNA mimics, we showed that these miRNAs are involved in the regulation of barrier function by modulating the expression of regulatory and structural components of tight junctional complexes. Furthermore, specific inhibitors directed at these miRNA abrogated the disturbance of tight junctions induced by enteropathogenic E. coli (EPEC). The half-maximal inhibitory concentration (IC(50)) was determined to 340 nM by monitoring inhibitor kinetics. In summary, we conclude that specific miRNAs effect regulatory as well as structural proteins of the junctional complex which in turn are involved in the barrier enhancing effect of EcN. Hence, we suggest that the application of miRNAs might be refined and further developed as a novel supportive strategy for the treatment of gastrointestinal disorders.  相似文献   

16.
17.
Dicer is aberrantly expressed in several types of malignancies. Cleaved by Dicer, the small noncoding microRNAs (miRNAs) are considered potential tools for the diagnosis and prognosis of cancer. This study investigated the expression of miRNAs thought to target Dicer. Expression of 1,205 human miRNAs and miRNA*s were examined in four patients with prostate cancer (PCa) by miRNA array in which the threshold was set as two-fold. Seventy-three miRNAs and miRNA*s were significantly down-regulated while 10 were up-regulated in PCa tissues compared with matched histologically normal glands. Of these, miR-29b-1, miR-200a, miR-370, and miR-31, which were the most down/up-regulated and closely potentially target to the Dicer 3′ UTR, were investigated further. Tissues of primary tumors and matched normal prostate glands from 185 patients with PCa were collected for further investigation. Dicer mRNA levels were negatively correlated with miR-29b-1 (ρs = −0.177, p = 0.017), miR-200a (ρs = -0.489, p < 0.0001) and miR-31 (ρs = −0.314, p < 0.0001) expression. Compared with adjacent normal glands, PCa tissues showed significantly lower miR-200a and miR-31 expression levels. Furthermore, in metastatic PCa, the expression levels of miR-200a, miR-370, and miR-31 were dramatically higher than in localized PCa. Additionally, elevated expression levels of miR-200a and miR-31 appeared to be associated with castration-resistant PCa. These findings suggest possibilities that miR-200a and miR-31 target Dicer and are involved in the carcinogenesis, migration, and behavior of castration-resistant PCa, indicating that they could be potential biomarkers for monitoring PCa progression.  相似文献   

18.
19.
CRISPR/Cas技术能高效进行基因组定点编辑,但不同细菌来源或人工改造的Cas9以及Cpf1等核酸酶识别的PAM (protospacer adjacent motif)有差异,因此不同的基因编辑核酸酶可能采用不同类型的sgRNAs(small guide RNAs)。MicroRNAs (miRNAs)是一类调控性的小分子非编码RNAs,为了研究miRNA前体中是否可能存在特异性高的sgRNAs靶点,本文利用本课题组前期开发的生物信息学软件CRISPR-offinder,对靶向28 645条miRNA前体的11种不同类型sgRNA的丰度及特异性进行了分析,并利用CRISPR/Cas9慢病毒技术构建了猪miR-302/367基因簇敲除细胞系,对构建的猪miRNA敲除细胞系的效率进行了检测。结果表明,每个miRNA前体中平均存在约8种不同类型sgRNA的靶点;通过评估靶向猪miRNA前体sgRNA的脱靶效应,发现其中特异性高的sgRNA仅占18.2%;通过CRISPR/Cas9慢病毒技术成功构建了猪miR-302/367基因簇敲除细胞系,发现通过该技术构建miRNA敲除细胞系的效率为40%。本研究为利用CRISPR/Cas技术靶向敲除miRNA提供了重要资源。  相似文献   

20.
Understanding the function of individual microRNA (miRNA) species in mice would require the production of hundreds of loss-of-function strains. To accelerate analysis of miRNA biology in mammals, we combined recombinant adeno-associated virus (rAAV) vectors with miRNA 'tough decoys' (TuDs) to inhibit specific miRNAs. Intravenous injection of rAAV9 expressing anti-miR-122 or anti-let-7 TuDs depleted the corresponding miRNA and increased its mRNA targets. rAAV producing anti-miR-122 TuD but not anti-let-7 TuD reduced serum cholesterol by >30% for 25 weeks in wild-type mice. High-throughput sequencing of liver miRNAs from the treated mice confirmed that the targeted miRNAs were depleted and revealed that TuDs induced miRNA tailing and trimming in vivo. rAAV-mediated miRNA inhibition thus provides a simple way to study miRNA function in adult mammals and a potential therapy for dyslipidemia and other diseases caused by miRNA deregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号