首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This is the first report that confirms waterborne transmission of francisellosis in Atlantic cod. To investigate the transmission of disease, particle reduced water was transferred from a tank with intraperitoneally infected cod to a tank with healthy cod. Waterborne transmission of Francisella noatunensis was confirmed in the effluent group using immunohistochemistry and real-time quantitative PCR (RT-qPCR). The bacteria were located inside the accumulated macrophage-like cells. Specific and high antibody responses against live and inactivated bacteria were observed. Oil adjuvant had no effect on the antibody responses against inactivated F.?noatunensis compared to saline formulation. The antigen epitope was a 20-25?kDa component of F.?noatunensis suggested to be lipopolysaccharide detected by Western blot, Sypro Ruby and Silver staining. Systemic immune reactions were investigated by measuring the expression of IFN-γ, IL-1β and IL-10 genes with RT-qPCR. After i.p. injection of live bacteria, a significant up-regulation of IFN-γ and IL-1β expression was observed from 15 to 60 days post infection in spleen and head kidney. In intestine, IFN-γ was significantly up-regulated after 30 days whereas rectum showed no significant differences in expression. Elevated expression of IL-10 was observed in all the organs tested but was only significantly up-regulated at 60 days post infection in intestine from i.p. infected fish. For the cohabitant group, IL-1β and IFN-γ was up-regulated in spleen whereas intestine and rectum showed a down-regulation after 60 days. IL-10 was up-regulated in intestine of cohabitant fish from day 30 to day 60. These results indicate that F.?noatunensis infection provokes both specific antibody responses and long term inflammatory responses in cod. The present study provides new knowledge about infection routes and shows that both humoral and cellular defence mechanisms are triggered by F.?noatunensis in cod.  相似文献   

2.
Francisellosis, caused by the bacterium Francisella noatunensis, is one of the most severe diseases affecting farmed cod, and has caused great economic loss for the cod farming industry in Norway. We studied the fate of F. noatunensis in the marine environment, focusing on the role of blue mussels. In experimental challenges, waterborne F. noatunensis was rapidly filtered by the blue mussel and transported to the digestive diverticulae. The bacteria passed through the entire digestive system. Intraperitoneal injection of cod with suspensions prepared from faeces collected from challenged mussels resulted in the development of francisellosis in the recipients, demonstrating that some bacteria were alive and infective when shed in mussel faeces. Bacterial clearance from the mussels was relatively fast, and no evidence was found, suggesting that the bacterium is capable of persisting or multiplying in the mussel tissues. A cohabitation experiment with cod and mussels previously exposed to F. noatunensis did not lead to infection in cod. A direct transmission from contaminated mussels to cod was thus not demonstrated; however, faeces particles with infective bacteria may play a role in the transmission of the bacterium in marine food chains.  相似文献   

3.
The Gram-negative bacterium Francisella novicida infects primarily monocytes/macrophages and is highly virulent in mice. Macrophages respond by producing inflammatory cytokines that confer immunity against the infection. However, the molecular details of host cell response to Francisella infection are poorly understood. In this study, we demonstrate that F. novicida infection of murine macrophages induces the activation of Akt. Inhibition of Akt significantly decreases proinflammatory cytokine production in infected macrophages, whereas production of the anti-inflammatory cytokine IL-10 is enhanced. Analysis of the mechanism of Akt influence on cytokine response demonstrated that Akt promotes NF-kappaB activation. We have extended these findings to show that Akt activation may be regulated by bacterial genes associated with phagosomal escape. Infection with mglA mutants of F. novicida elicited sustained activation of Akt in comparison to cells infected with wild-type F. novicida. Concomitantly, there was significantly higher proinflammatory cytokine production and lower IL-10 production in cells infected with the mglA mutant. Finally, transgenic animals expressing constitutively active Akt displayed a survival advantage over their wild-type littermates when challenged with lethal doses of F. novicida. Together, these observations indicate that Akt promotes proinflammatory cytokine production by F. novicida-infected macrophages through its influence on NF-kappaB, thereby contributing to immunity against F. novicida infection.  相似文献   

4.
5.
Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium, which escapes from the endo/phagosome and replicates in the host cytoplasm. O. tsutsugamushi infection induces production of pro-inflammatory mediators including interleukin-1β (IL-1β), which is secreted mainly from macrophages upon cytosolic stimuli by activating cysteine protease caspase-1 within a complex called the inflammasome, and is a key player in initiating and maintaining the inflammatory response. However, the mechanism for IL-1β maturation upon O. tsutsugamushi infection has not been identified. In this study, we show that IL-1 receptor signaling is required for efficient host protection from O. tsutsugamushi infection. Live Orientia, but not heat- or UV-inactivated Orientia, activates the inflammasome through active bacterial uptake and endo/phagosomal maturation. Furthermore, Orientia-stimulated secretion of IL-1β and activation of caspase-1 are ASC- and caspase-1- dependent since IL-1β production was impaired in Asc- and caspase-1-deficient macrophages but not in Nlrp3-, Nlrc4- and Aim2-deficient macrophages. Therefore, live O. tsutsugamushi triggers ASC inflammasome activation leading to IL-1β production, which is a critical innate immune response for effective host defense.  相似文献   

6.
Francisella noatunensis causes the systemic granulomatous inflammatory disease, francisellosis in cod. Little is known about the lifestyle of this facultative intracellular bacterium within cod leucocytes. We have examined the interaction of this bacterium with phagocytic cells isolated from cod with emphasis on monocytes, macrophages, neutrophils and phagocytic B-cells. It is clear from confocal microscopy sections through adherent cell preparations that numerous bacteria were located intracellularly following in vitro infection in monocytes and macrophages. In these sections bacteria were immunostained and cell actin was stained using Alexa Fluor® 488 phalloidin. Bacteria were observed in close association with neutrophils and intracellularly (low numbers) in B-cells. Bacteria were observed more frequently in head kidney- than in peripheral blood- and spleen- leucocytes. Following infection, bacteria were initially observed grouped together and located close to the nucleus. Later they were found spread within the cytoplasm. This indicates egression of F. noatunensis from the phagosome to the cytoplasm where replication possibly takes place. It may be hypothesised that the bacteria may alter maturation of the phagosome and thus, avoid the potent intracellular killing mechanisms of phagocytic cells. The intracellular lifestyle involving escape to cytoplasm prior to fusion with the lysosome may have consequences for vaccine development as well as antibiotic treatment of infected cod.  相似文献   

7.
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host’s immune response to certain bacteria when antibiotics are not completely effective.  相似文献   

8.
Jones CL  Weiss DS 《PloS one》2011,6(6):e20609
BACKGROUND: Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1β and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria. METHODOLOGY/SIGNIFICANT FINDINGS: Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-κB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection. CONCLUSIONS/SIGNIFICANCE: These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria.  相似文献   

9.
10.
Francisella tularensis (Ft), a Gram-negative intracellular bacterium, is the etiologic agent of tularemia. Although attenuated for humans, i.p. infection of mice with <10 Ft live vaccine strain (LVS) organisms causes lethal infection that resembles human tularemia, whereas the LD50 for an intradermal infection is >10(6) organisms. To examine the immunological consequences of Ft LVS infection on the innate immune response, the inflammatory responses of mice infected i.p. or intradermally were compared. Mice infected i.p. displayed greater bacterial burden and increased expression of proinflammatory genes, particularly in the liver. In contrast to most LPS, highly purified Ft LVS LPS (10 microg/ml) was found to be only minimally stimulatory in primary murine macrophages and in HEK293T cells transiently transfected with TLR4/MD-2/CD14, whereas live Ft LVS bacteria were highly stimulatory for macrophages and TLR2-expressing HEK293T cells. Despite the poor stimulatory activity of Ft LVS LPS in vitro, administration of 100 ng of Ft LVS LPS 2 days before Ft LVS challenge severely limited both bacterial burden and cytokine mRNA and protein expression in the absence of detectable Ab at the time of bacterial challenge, yet these mice developed a robust IgM Ab response within 2 days of infection and survived. These data suggest that prior administration of Ft LVS LPS protects the host by diminishing bacterial burden and blunting an otherwise overwhelming inflammatory response, while priming the adaptive immune response for development of a strong Ab response.  相似文献   

11.
Francisella tularensis (Ft), the causative agent of tularemia, elicits a potent inflammatory response early in infection, yet persists within host macrophages and can be lethal if left unchecked. We report in this study that Ft live vaccine strain (LVS) infection of murine macrophages induced TLR2-dependent expression of alternative activation markers that followed the appearance of classically activated markers. Intraperitoneal infection with Ft LVS also resulted in induction of alternatively activated macrophages (AA-Mphi). Induction of AA-Mphi by treatment of cells with rIL-4 or by infection with Ft LVS promoted replication of intracellular Ftn, in contrast to classically activated (IFN-gamma plus LPS) macrophages that promoted intracellular killing of Ft LVS. Ft LVS failed to induce alternative activation in IL-4Ralpha(-/-) or STAT6(-/-) macrophages and prolonged the classical inflammatory response in these cells, resulting in intracellular killing of Ft. Treatment of macrophages with anti-IL-4 and anti-IL-13 Ab blunted Ft-induced AA-Mphi differentiation and resulted in increased expression of IL-12 p70 and decreased bacterial replication. In vivo, Ft-infected IL-4Ralpha(-/-) mice exhibited increased survival compared with wild-type mice. Thus, redirection of macrophage differentiation by Ft LVS from a classical to an alternative activation state enables the organism to survive at the expense of the host.  相似文献   

12.
During the 1980s and 1990s wild-caught cod displaying visceral granulomatosis were sporadically identified from the southern North Sea. Presumptive diagnoses at the time included mycobacterial infection, although mycobacteria were never cultivated or observed histologically from these fish. Farmed cod in Norway displaying gross pathology similar to that identified previously in cod from the southern North Sea were recently discovered to be infected with the bacterium Francisella noatunensis subsp, noatunensis. Archived formalin-fixed paraffin-embedded tissues from the original North Sea cases were investigated for the presence of Mycobacterium spp. and Francisella spp. using real-time polymerase chain reaction, DNA sequencing and immunohistochemistry. Whilst no evidence of mycobacterial infection was found, F. noatunensis subsp. noatunensis was identified in association with pathological changes consistent with Francisella infections described from farmed cod in recent years. This study shows that francisellosis occurred in wild-caught cod in the southern North Sea in the 1980s and 1990s and demonstrates that this disease predates intensive aquaculture of cod.  相似文献   

13.
14.
Mutual interactions were investigated between intracellular parasitic bacterium Francisella tularensis (F.t.; highly virulent bacterium responsible for tularemia, replicating within the host macrophages) and murine macrophage-like cell line J774. Recombinant murine lymphokine INF-γ and/or LPS derived from E. coli were determined to stimulate in vitro antimicrobial activity of macrophage-like J774 cell line against the live vaccine strain (LVS) of F.t. through their ability to produce proinflammatory cytokines and chemokines. F.t. infection up-regulated IL-12 p40 production and down-regulated TNF-α production by stimulated macrophages; on the other hand, F.t. infection did not affect the production of IL-8, IL-6, MCP-5, and RANTES by stimulated macrophages. This showed that F.t. infection modulates the cytokine synthesis by J774 macrophage cell line.  相似文献   

15.
16.
Barel M  Meibom K  Charbit A 《PloS one》2010,5(12):e14193

Background

Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells.

Methodology/Principal Findings

Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant.

Conclusions/Significance

We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages.  相似文献   

17.
18.
Macrophages are able to recognize, internalize and destroy a large number of pathogens, thus restricting the infection until adaptive immunity is initiated. In this work our aim was to analyze the surface charge of cells activated by carrageenan (CAR) and lipopolysaccharide (LPS) through light and electron microscopy approaches as well as the release of inflammatory mediators in vitro. The ultrastuctural analysis and the light microscopy data showed that in vivo administration of CAR represents a potent inflammatory stimulation for macrophages leading to a high degree of spreading, an increase in their size, in the number of the intracellular vacuoles and membrane projections as compared to the macrophages collected from untreated animals as well as mice submitted to LPS. Our data demonstrated that CAR stimulated-macrophages displayed a remarkable increase in nitric oxide production and PGE2 release as compared to the cells collected from non-stimulated and stimulated mice with LPS in vivo. On the other hand, non-stimulated macrophages as well as macrophages stimulated by LPS produce almost the same quantities of TNF-alpha, while in vivo stimulation by CAR leads to a 30-40% increase of cytokine release in vitro compared to the other groups. In conclusion, our morphological and biochemical data clearly showed that in vivo stimulation with CAR induces a potent inflammatory response in macrophages representing an interesting model to analyze inflammatory responses.  相似文献   

19.
Nod2 is an intracellular innate immune receptor that plays a role in host defense and susceptibility to inflammatory disease. We show in this study that macrophages rendered refractory to TLR4 and Nod2 signaling by exposure to LPS and muramyl dipeptide (MDP) exhibit impaired TNF-alpha and IL-6 production in response to pathogenic Listeria monocytogenes and Yersinia pseudotuberculosis as well as commensal bacteria including Escherichia coli and Bacteroides fragilis. Surprisingly, Nod2 deficiency was associated with impaired tolerization in response to pathogenic and commensal bacteria. Mechanistically, reduced tolerization of Nod2-null macrophages was mediated by recognition of bacteria through Nod1 because it was abolished in macrophages deficient in Nod1 and Nod2. Consistently, Nod2-null macrophages tolerant to LPS and MDP showed enhanced production of TNF-alpha and IL-6 as well as increased NF-kappaB and MAPK activation in response to the dipeptide KF1B, the Nod1 agonist. Furthermore, reduced tolerization of Nod2-deficient macrophages in response to bacteria was abolished when mutant macrophages were also rendered tolerant to the Nod1 ligand. Finally, MDP stimulation induced refractoriness not only to MDP, but also to iE-DAP stimulation, providing a mechanism to explain the reduced tolerization of Nod2-deficient macrophages infected with bacteria. These results demonstrate that cross-tolerization between Nod1 and Nod2 leads to increase recognition of both pathogenic and commensal bacteria in Nod2-deficient macrophages pre-exposed to microbial ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号