首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured pituitary cells prelabeled with myo-[2-3H] inositol were permeabilized by ATP4-, exposed to guanine nucleotides and resealed by Mg2+. Addition of guanosine 5'-0-(3-thio triphosphate) (GTP gamma S) to permeabilized cells, or gonadotropin releasing hormone (GnRH) to resealed cells, resulted in enhanced phospholipase C activity as determined by [3H] inositol phosphate (Ins-P) production. The effect was not additive, but the combined effect was partially inhibited by guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) or by neomycin. Surprisingly, addition of GDP beta S (100-600 microM) on its own resulted in a dose-related increase in [3H]Ins-P accumulation. Several nucleoside triphosphates stimulated phospholipase C activity in permeabilized pituitary cells with the following order: UTP greater than GTP gamma S greater than ATP greater than CTP. The stimulatory effect of UTP, ATP and CTP, but not GTP gamma S or GDP beta S, could also be demonstrated in normal pituitary cells suggesting a receptor-activated mechanism. GTP and GTP gamma S decreased the affinity of GnRH binding to pituitary membranes and stimulated LH secretion in permeabilized cells. These results suggest the existence of at least two G-proteins (stimulatory and inhibitory) which are involved in phospholipase C activation and GnRH action in pituitary cells.  相似文献   

2.
We have studied the role of guanine-nucleotide binding regulatory proteins (G proteins) in the stimulation of inositol lipid breakdown during mitogenic activation of normal human T lymphocytes. The effect of the mitogen phytohemagglutinin (PHA) was compared with the action of two G-protein activators, fluoroaluminate (AlF4-) and guanosine-5'-O-thiotriphosphate (GTP gamma S). PHA and AlF4- stimulated the breakdown of inositol lipids via both the phospholipase A and C pathways when added to intact lymphocytes. PHA, AlF4- and GTP gamma S also triggered both these pathways when added to permeable lymphocytes. The magnitude of the response obtained with AlF4- and GTP gamma S was about four-fold less than with PHA. This difference was attributable to increases in cAMP elicited by AlF4- and GTP gamma S which inhibited the phospholipase pathways. AlF4-, GTP gamma S, and PHA all stimulated the phosphorylation of a 42 kDa protein on tyrosine residues. We propose a model for the early steps following mitogen binding, including sequential activation of a G protein, phospholipase C, protein kinase C and a tyrosine protein kinase. A parallel pathway involving G protein mediated activation of phospholipase A is also implicated.  相似文献   

3.
Incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4,5-bisphosphate (PIP2) in membranes isolated from rat brain was enhanced in a concentration-dependent manner by the GTP analogue guanosine 5'-O-(thio)triphosphate (GTP gamma S). In contrast, neither the labeling of phosphatidylinositol 4-phosphate in the same membranes nor PIP kinase activity in the soluble fraction were stimulated by GTP gamma S. Synthesis of [32P]PIP2 was not stimulated by GTP, GDP, GMP, or ATP; however, the stimulatory effects of GTP gamma S were antagonized by GTP, GDP, and guanosine 5'-O-thiodiphosphate (GDP beta S). The nucleotide-stimulated labeling of PIP2 was not due to protection of [gamma-32P] ATP from hydrolysis, activation of PIP2 hydrolysis by phospholipase C, or inhibition of PIP2 hydrolysis by its phosphomonoesterase. Therefore, phosphatidylinositol 4-phosphate kinase activity in brain membranes may be regulated by a guanine nucleotide regulatory protein. This system may enhance the resynthesis of PIP2 following receptor-mediated activation of phospholipase C.  相似文献   

4.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

5.
Studies on the phosphorylation of inositol phospholipids of rat liver membranes have shown that [gamma S]pppG stimulates 32P incorporation from [gamma-32P]ATP into PI and PIP. This effect appeared specific for stable GTP analogues and could not be reproduced by other compounds. ADP-ribosylation of the membranes with cholera toxin resulted in a large decrease of PIP2 without changes in the level of PIP. Since an activation of phospholipase C can be ruled out, the lowering of PIP2 is explained on the basis of an inhibition of PIP kinase (EC 2.7.1.68). From these results it appears that a novel cholera-toxin-sensitive G-protein is involved in the regulation of PIP kinase.  相似文献   

6.
F Okajima  K Sato  Y Kondo 《FEBS letters》1989,253(1-2):132-136
Various adenine nucleotides activated phospholipase C of FRTL-5 cell membranes in the following order of activity, ATP gamma S greater than ATP greater than AppNp greater than AppCp = ADP greater than MeSATP. This order was well consistent with that observed in intact cells. Such activation occurred only in the presence of appropriate concentrations of GTP gamma S and Ca2+, in a way similar to the norepinephrine-induced activation. NaF, a non-specific GTP-binding protein (G-protein) activator, also stimulated the enzyme. These adenine nucleotides, norepinephrine and NaF-induced activations were inhibited by GDP beta S. We conclude that a G-protein is involved in the adenine nucleotides-induced activation of phospholipase C via P2-purinergic receptor in FRTL-5 cells.  相似文献   

7.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

8.
A guanine nucleotide-dependent P2Y-purinergic receptor-regulated phospholipase C activity of turkey erythrocyte membranes has been characterized in detail previously (Boyer, J. L., Downes, C. P., and Harden, T. K. (1989) J. Biol. Chem. 264, 884-890). The occurrence of agonist-induced desensitization of this receptor-regulated phospholipase C is now described. Preincubation of turkey erythrocytes with the P2Y-purinergic receptor agonist ADP beta S resulted in a marked loss of capacity of ADP beta S plus GTP to stimulate phospholipase C in membranes derived from these cells. The half-time of occurrence of desensitization was 0.5-2.0 min, and within 10 min responsiveness had reached a new quasi-steady state level representing 40-55% of control. Transfer of agonist-preincubated erythrocytes to agonist-free medium resulted in recovery of agonist plus GTP responsiveness of the membrane phospholipase C activity to control levels with a half-time of 10-20 min. The change in ADP beta S plus GTP responsiveness occurred as a loss of maximal effect with little or no change in the apparent affinity of agonist for stimulation of inositol phosphate production. Induction of desensitization occurred with an agonist-specificity that followed that expected of a P2Y-purinergic receptor. Neither the rate of activation nor the final phospholipase C activity attained in the presence of GTP gamma S alone was altered in membranes from cells preincubated with ADP beta S for 15 min. AlF-4-stimulated inositol phosphate production was also not modified in membranes from agonist-preincubated erythrocytes. In contrast, the capacity of ADP beta S to increase the rate of activation of phospholipase C by GTP gamma S was markedly reduced in membranes from agonist-preincubated cells. The amount of 3H-radioactivity in phosphoinositides, as well as the ratio of labeling among the phosphoinositides, was not altered by incubation of erythrocytes with a P2Y-purinergic receptor agonist. Taken together these data suggest that P2Y-purinergic receptor agonist-induced desensitization occurs as a consequence of a modification at the level of the receptor or at the level of receptor-guanine nucleotide regulatory protein (G-protein) coupling with no change occurring in the capacity of the G-protein to activate phospholipase C.  相似文献   

9.
Phospholipase C (specific for inositol lipids) is known to be present both in membranes and cytosol. Receptor-mediated activation of this enzyme occurs via a guanine nucleotide regulatory protein (G-protein), designated Gp. We have compared the stimulation of this enzyme by fMet-Leu-Phe via the G-protein in HL60 membranes and in permeabilised cells. fMet-Leu-Phe stimulated phospholipase C in membranes at 2 min and the response was dependent on exogenously added GTP. GTP alone also stimulated phospholipase C activity such that at 10 min the response to fMet-Leu-Phe was minimal. In comparison, the response to fMet-Leu-Phe in permeabilised cells was greater in extent but did not require added GTP. However, it was antagonized by GDP analogues (GDP[beta S] greater than GDP greater than dGDP) and by pertussis toxin pretreatment, indicating that fMet-Leu-Phe-stimulated phospholipase C activity was also mediated via Gp. GTP and its analogue GTP[gamma S] also stimulated phospholipase C and their effects were strictly additive to the stimulation obtained with fMet-Leu-Phe. Such additivity was also observed when two receptor-directed agonists, fMet-Leu-Phe and ATP, were used to stimulate intact cells. It is concluded that (a) the size of the response with fMet-Leu-Phe in membranes is limited by the loss of a component, possibly phospholipase C, and (b) stoichiometry and physical organisation of multiple species of G-proteins and/or phospholipases C may explain the independent nature of phospholipase C activation by fMet-Leu-Phe, ATP and guanine nucleotides.  相似文献   

10.
We have investigated the effects of isoproterenol (ISO) and forskolin on carbachol(CCh)- and fluoroaluminate (AlF4-)-induced phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, myo-inositol 1,4,5-trisphosphate (IP3) production, 1,2-diacylglycerol, measured as phosphatidic acid (PA) formation, and contraction in the bovine iris sphincter smooth muscle. The data from these studies can be summarized as follows. (1) CCh (20 microM) stimulated significantly PIP2 hydrolysis, IP3 production, PA formation, and contraction. (2) Addition of ISO (0.1-25 microM), which raises the tissue cAMP level, to muscle precontracted with CCh attenuated PIP2 hydrolysis, IP3 production, PA formation and contraction in a time- and dose-dependent manner. (3) AlF4- (10 microM) induced a slow but progressive hydrolysis of PIP2, accompanied by parallel production of IP3, formation of PA, and contraction of the smooth muscle. The effects of AlF4- were dose-dependent and inhibited by deferoxamine, an Al3+ ion chelator. (4) Both forskolin (1-25 microM), which directly stimulates adenylate cyclase, and ISO inhibited the responses induced by AlF4- (10 microM) in a dose-dependent manner. (5) NaF (1-5 mM) had no effect on the activity of phospholipase C (PLC), purified from bovine iris sphincter. Furthermore, phosphorylation of the enzyme by catalytic subunit of protein kinase A had no inhibitory effect on PLC activity against PIP2. In conclusion, neither the muscarinic receptor nor PLC are the target sites for cAMP inhibition; instead the putative G-protein, which couples the activated muscarinic receptor to PLC, may be phosphorylated by cAMP-dependent protein kinase. This could attenuate the stimulation of PLC by the G-protein, thus resulting in inhibition of PIP2 hydrolysis and consequently leading to muscle relaxation. These results demonstrate cross-talk between the cAMP and IP3-Ca2+ second messenger systems and suggest that this could constitute a regulatory mechanism for the process of contraction-relaxation in smooth muscle.  相似文献   

11.
Aluminum (Al) is believed to exert a primary role in the neurotoxicity associated with dialysis encephalopathy and has been suggested to be involved in a number of other neurological disorders, including Alzheimer's disease. Al, complexed with fluoride to form fluoroaluminate (AlF4-), can activate the GTP-binding (G) proteins of the adenylate cyclase and retinal cyclic GMP phosphodiesterase systems. Since an involvement of G-proteins with cerebral phosphoinositide (PtdIns) metabolism has also been suggested, in this study we investigated the interaction of the stable GTP analogue GTP(S), Al salts and NaF with this system. In rat cerebral cortical membranes, GTP(S) dose-dependently stimulated [3H]inositol phosphates ([3H]InsPs) accumulation. This effect was potentiated by carbachol and was partially prevented by the GTP-binding antagonist GDP(S), indicating that CNS muscarinic receptor activation is coupled to PtdIns hydrolysis via putative G-protein(s). GTP(S) stimulation was also inhibited by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, which is known to exert a negative feedback control on agonist-stimulated PtdIns metabolism. Both Al salts and NaF mimicked the action of GTP(S) in stimulating PtdIns turnover. Their actions were highly synergistic, suggesting that AlF4- could be the active stimulatory species. However, the stimulatory effects of AlCl3 and/or NaF were not potentiated by carbachol and were not inhibited by GDP(S) and PMA, suggesting that separate sites of action might exist for GTP(S) and AlF4-. In the nervous tissue, activation of PtdIns hydrolysis by Al (probably as AlF4-) may be mediated by activating a regulatory G-protein at a location distinct from the GTP-binding site or by a direct stimulation of phospholipase C.  相似文献   

12.
The effect of short-term cholinergic desensitization on muscarinic acetylcholine receptor (mAChR)-mediated activation of phospholipase C was investigated in membranes isolated from the bovine iris sphincter smooth muscle. Membranes prepared from normal or desensitized muscles, prelabeled with either [3H]myo-inositol or 32P from [gamma-32P]ATP, were incubated with a hydrolysis-resistant analogue of GTP, GTP gamma S, or GTP gamma S plus carbachol (CCh), and the production of [3H]myo-inositol 1,4,5-trisphosphate (IP3) and the breakdown of polyphosphoinositides were assessed. In normal membranes, GTP (greater than or equal to 1 mM), GTP gamma S (greater than 10 microM) and GTP gamma S (1 microM) plus CCh (10 microM), but not GDP or GDP beta S, increased phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and IP3 production. GTP gamma S increased IP3 accumulation in a time- and dose-dependent manner, and CCh, which had no effect on phospholipase C activity in the absence of GTP gamma S, potentiated the effects of GTP gamma S. The effect of CCh plus GTP gamma S on IP3 production was inhibited by atropine, had an absolute requirement for nM amounts of Ca2+ and was not affected by pertussis toxin. At higher concentrations (greater than 1 microM), Ca2+ alone induced PIP2 hydrolysis. Short-term exposure (less than 60 min) of the muscle to CCh (100 microM) did not affect the total number (Bmax) of mAChRs nor their affinity (KD) for [3H]-N-methylscopolamine. Desensitization did, however, result in: (1) a loss of the CCh-high affinity binding state of the sphincter mAChRs in a manner analogous to that produced by GTP gamma S; (2) a loss of the ability of GTP gamma S to affect CCh binding to the receptors; and (3) an attenuation of the GTP gamma S plus CCh-stimulated PIP2 hydrolysis. In conclusion, the data presented suggest that, in the iris smooth muscle, G-proteins are involved in the coupling of mAChRs to phospholipase C and that short-term cholinergic desensitization results in (1) the uncoupling of the receptor-G-protein complex and (2) the attenuation of mAChR-activation of phospholipase C.  相似文献   

13.
We have investigated the regulation of phospholipase D (PLD) activity by guanine nucleotides and Ca2+ in cells of the NG108-15 neuroblastoma X glioma line that were permeabilized with digitonin. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) caused a nearly sixfold increase (EC50 = 3 microM) in production of [3H]phosphatidylethanol (specific product of the PLD transphosphatidylation reaction). Other GTP analogues were less effective than GTP gamma S, and guanosine-5'-O-(2-thiodiphosphate) inhibited PLD activation by GTP gamma S. Both basal and GTP gamma S-stimulated PLD activities were potentiated by MgATP and Mg2+. Adenosine-5'-O-(3-thiotriphosphate) and ADP also potentiated the effect of GTP gamma S, but non-phosphorylating analogues of ATP had no such effect. The activation of PLD by GTP gamma S did not require Ca2+ and was independent of free Ca2+ ions up to a concentration of 100 nM (resting intracellular concentration). Higher Ca2+ concentrations (greater than or equal to 1 microM) completely inhibited PLD activation by GTP gamma S. It is concluded that elevated intracellular Ca2+ concentrations may negatively modulate PLD activation by a guanine nucleotide-binding protein, thus affecting receptor-PLD coupling in neural-derived cells.  相似文献   

14.
The light-stimulated production of inositol triphosphate (IP3), via hydrolysis of phosphatidylinositol bisphosphate (PIP2), can be demonstrated in an in vitro preparation of isolated distal segments of squid photoreceptors. The retina is labeled with [3H]inositol (Szuts, E. Z., Wood, S. F., Reid, M. S., and Fein, A. (1986) Biochem. J. 240, 929-932), and the rhodopsin-containing distal segments are isolated in artificial cytosol. Within 2 s after a flash, IP3 levels increase 200% (corresponding to an intracellular increase of approximately 5 microM), and the lipid precursor PIP2 decreases by 50%. Inositol bisphosphate (IP2) levels increase later, as a breakdown product of IP3. IP3 response is light-dependent, saturating when 0.5% of the rhodopsin is photoactivated. Guanosine-5'-O-(3-thiotriphosphate (GTP gamma S) binding demonstrates that the plasma membrane of most of the photoreceptor distal segments is intact or only transiently permeable. Membrane permeabilization enhances light-activated GTP gamma S binding but abolishes the light-activated IP3 production. Receptor-mediated production of IP3 is believed to be the result of a receptor-G-protein-phospholipase C cascade (i.e. Cockcroft, S., and Gomperts, B. D. (1985) Nature 314, 534-536). To test for G-proteins, we incubated the photoreceptors in AlF4- (an activator of G-proteins) in the dark. IP3 and IP2 were produced with a corresponding decrease in PIP2. Incubation with GTP or GTP gamma S, in hypotonic buffer, which causes transient leakiness, increased dark levels by IP3 by 50%. Addition of GTP in isotonic buffer enhanced the light-induced increase of IP3. These results localize the light-stimulated phospholipase C activity to the distal segments and suggest that a G-protein couples rhodopsin to phospholipase C.  相似文献   

15.
Phosphatidylinositol 4-phosphate (PIP) kinase (E.C. 2.7.1.68) has been purified about 1200-fold from rat liver plasma membranes, taking advantage of affinity chromatography on quercetin-Sepharose as a novel step. The purified PIP kinase showed no contamination by the following enzyme activities: phosphatidylinositol (PI) kinase (EC 2.7.1.67), protein kinase C (EC 2.7.1.-), diacylglycerol kinase (EC 2.7.1.-), phospholipase C (EC 3.1.4.11), protein-tyrosine kinase (EC 2.7.1.112), alkaline phosphatase (EC 3.1.3.1), triphosphoinositide phosphomonoesterase (EC 3.1.3.36), adenylate kinase (EC 2.7.4.3) and cAMP-dependent protein kinase (EC 2.7.1.37). The liver membrane enzyme requires high Mg2+ concentrations with a KM value of 10 mM. Ca2+ or Mn2+ could replace Mg2+ to a certain, though small, extent. Apparent KM values with respect to PIP and ATP were 10 and 65 microM, respectively. GTP was slightly utilized by the kinase as phosphate donor while CTP was not. Quercetin inhibited the enzyme with Ki = 34 microM. Extending our previous observations (Urumow, T. and Wieland, O.H. (1986) FEBS Lett. 207, 253-257 and Urumow, T. and Wieland, O.H. (1988) Biochim. Biophys. Acta 972, 232-238) [gamma S]pppG still stimulated the PIP kinase in extracts of solubilized liver membranes. 20-40% (NH4)2SO4 precipitation of the membrane extracts yielded a fraction that contained the bulk of enzyme activity but did not respond to stimulation by [gamma S]pppG any longer. This was restored by recombination with a protein fraction collected at 40-70% (NH4)2SO4 saturation, presumably containing a GTP binding protein and/or some other factor separated from the PIP kinase. In the reconstituted system [gamma S]pppG stimulated PIP kinase in a concentration dependent manner with maximal activation at 5 microM. This effect was not mimicked by [gamma S]pppA and was blocked by [beta S]ppG. These results strongly support our view that in liver membranes PIP kinase is regulated by a G-protein.  相似文献   

16.
Retinoic acid, a derivative of vitamin A, is shown to inhibit the levels of inositol phosphates and diacylglycerol by 25-30% when added to intact HL-60 cells at concentrations which induce differentiation. The onset of inhibition occurs after 10 min and reaches a maximum at 45 min. To study the mechanism and the site of action of retinoic acid, the activity of the phosphatidylinositol bisphosphate-specific phospholipase C was studied in cells permeabilized with streptolysin O and in membrane preparations. Phospholipase C activity was stimulated either via the guanine nucleotide regulatory protein (G-protein) or directly by Ca2+. Retinoic acid treatment, in a time- and concentration-dependent manner, led to a decrease in phospholipase C activity when stimulated with either GTP gamma S or NaF, both of which activate the enzyme via the G-protein. By contrast, it had no effect on the enzyme activity when stimulated with Ca2+ alone. This indicates that retinoic acid interferes with the coupling of the G-protein and phospholipase C. A relationship between the inhibition of phospholipase C activity and the induction of differentiation by retinoic acid was investigated. Only a small inhibition of GTP gamma S-stimulated phospholipase C activity was observed when an analogue of retinoic acid, etretine or Ro10-1670, with low differentiating activity, was used. Moreover, no inhibition of the GTP gamma S-stimulated phospholipase C activity was observed in an HL-60 sub-line resistant to retinoic acid. These results suggest that phospholipase C inhibition is an important step in the induction of differentiation.  相似文献   

17.
The mode of phospholipase C activation initiated with platelet-derived growth factor (PDGF) has been studied in comparison with that initiated with vasopressin and bombesin in a rat fibroblast line, WFB. Stimulation of WFB cells by PDGF, vasopressin, and bombesin elicites rapid hydrolysis of polyphosphoinositides and an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i). On stimulation by PDGF, there was a lag period of about 10 s before an increase in [Ca2+]i. No measurable lag period was observed in the [Ca2+]i response induced by vasopressin or bombesin. Pretreatment of WFB cells with phorbol 12-myristate 13-acetate profoundly inhibited inositol phosphate formation evoked by vasopressin and bombesin, but enhanced to some extent inositol phosphate formation stimulated by PDGF. In membranes prepared from WFB cells, GTP markedly augmented inositol polyphosphate formation induced by vasopressin and bombesin. It was not successful in showing the PDGF-stimulated formation of inositol phosphates in the membrane preparation. The effects of GTP, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) on polyphosphoinositide hydrolysis stimulated by growth factors were studied in WFB cells made permeable to nucleotides by treatment with either saponin or Pseudomonas aeruginosa cytotoxin. PDGF, vasopressin, and bombesin elicited inositol phosphate production in the permeabilized WFB cells in the absence of added GTP. GDP beta S, a competitive inhibitor of GTP-binding proteins (G-proteins), markedly reduced the bombesin- and vasopressin-stimulated production of inositol phosphates. However, the PDGF-stimulated production of inositol phosphates was not affected by the addition of GDP beta S. GTP gamma S, an agonist of G-proteins, largely enhanced the vasopressin- and bombesin-stimulated hydrolysis of inositol lipids when added at 10-100 microM. In the presence of GTP gamma S, the PDGF-stimulated hydrolysis of inositol lipids was not enhanced, but was reduced: 100 microM GTP gamma S reduced the stimulated hydrolysis to about a half of the control level. Only GTP gamma S, and no other nucleoside triphosphates, was found to have these effects. Activation of G-proteins in WFB cells by fluoroaluminate resulted in the inhibition of inositol phosphate production elicited with not only PDGF, but also with vasopressin and bombesin. These results indicate that a G-protein couples vasopressin and bombesin receptors to the activation of phospholipase C. Moreover, these results suggest that coupling of the PDGF receptor to phospholipase C is not mediated through a G-protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A 150-kDa phospholipase C has previously been purified from turkey erythrocytes and has been shown by reconstitution with turkey erythrocyte membranes to be a receptor- and G-protein-regulated enzyme (Morris, A. J., Waldo, G. L., Downes, C.P., and Harden, T. K. (1990) J. Biol. Chem. 265, 13501-13507; Morris, A.J., Waldo, G.L., Downes, C.P., and Harden, T.K. (1990) J. Biol. Chem. 265, 13508-13514). Combination of this 150-kDa protein with phosphoinositide substrate-containing phospholipid vesicles prepared with a cholate extract from purified turkey erythrocyte plasma membranes resulted in conferrence of AlF4- sensitivity to the purified phospholipase C. Guanosine 5'-3-O-(thio)triphosphate also activated the reconstituted phospholipase C in a manner that was inhibited by guanosine 5'-2-O-(thio)-diphosphate. The magnitude of the AlF4- stimulation was increased with increasing amounts of plasma membrane extract, and was also dependent on the concentration of purified phospholipase C. Using reconstitution of AlF4- sensitivity as an assay, the putative G-protein conferring regulation to the 150-kDa phospholipase C was purified to near homogeneity by sequential chromatography over Q-Sepharose, Sephacryl S-300, octyl-Sepharose, hydroxylapatite, and Mono-Q. Reconstituting activity co-purified with an approximately 43-kDa protein identified by silver staining; lesser amounts of a 35-kDa protein was present in the final purified fractions, as was a minor 40-kDa protein. The 43-kDa protein strongly reacted with antiserum against a 12-amino acid sequence found at the carboxyl terminus of Gq and G11, the 35-kDa protein strongly reacted with G-protein beta-subunit antiserum, and the 40-kDa protein reacted with antiserum that recognizes Gi3. Immunoprecipitation of the 43-kDa protein resulted in loss of phospholipase C-stimulating activity of the purified fraction. The idea that this is a phospholipase C-regulating G-protein is further supported by the observation that co-reconstitution of G-protein beta gamma-subunit with the purified phospholipase C-activating fraction resulted in a beta gamma-subunit-dependent inhibition of AlF(4-)-stimulated phospholipase C activity in the reconstituted preparation.  相似文献   

19.
ATP and ADP, in concentrations ranging from 1-100 microM, increased the release of [3H]choline and [3H]phosphorylcholine (P-choline) from bovine aortic endothelial cells (BAEC) prelabelled with [3H]choline. This action was detectable within 5 minutes and was maintained for at least 40 minutes. ATP and ADP were equiactive, and their action was mimicked by their phosphorothioate analogs (ATP gamma S and ADP beta S) and adenosine 5'-(beta, gamma imido) triphosphate (APPNP), but not by AMP, adenosine, and adenosine 5'-(alpha, beta methylene)triphosphate (APCPP): these results are consistent with the involvement of P2Y receptors. ATP also induced an intracellular accumulation of [3H]choline: the intracellular level of [3H]choline was increased 30 seconds after ATP addition and remained elevated for a least 20 minutes. The action of ATP on the release of choline metabolites was reproduced by bradykinin (1 microM), the tumor promoter phorbol 12-myristate 13-acetate (PMA, 50 nM), and the calcium ionophore A23187 (0.5 microM). Down-regulation of protein kinase C, following a 24-hour exposure of endothelial cells to PMA, abolished the effects of PMA and ATP on the release of choline and P-choline, whereas the response to A23187 was maintained. These results suggest that in aortic endothelial cells, ATP produces a sustained activation of a phospholipase D hydrolyzing phosphatidylcholine. The resulting accumulation of phosphatidic acid might have an important role in the modulation of endothelial cell function by adenine nucleotides. Stimulation of phospholipase D appears to involve protein kinase C, activated following the release of diacylglycerol from phosphatidylinositol bisphosphate by a phospholipase C coupled to the P2Y receptors (Pirotton et al., 1987a).  相似文献   

20.
Incubation of the serum-deprived cultures of NIH/3T3 cells with bombesin or platelet-derived growth factor (PDGF) induced the phospholipase C-mediated hydrolysis of phosphoinositides. Protein kinase C-activating 12-O-tetradecanoylphorbol 13-acetate (TPA) and pertussis toxin inhibited the bombesin-induced phospholipase C reactions. AlF4-, a direct activator of GTP-binding proteins (G proteins), also induced the phospholipase C reactions and TPA inhibited the AlF4- -induced reactions. These results suggest that a pertussis toxin-sensitive G protein is involved in the coupling of the bombesin receptor to the phospholipase C and that the coupling of the G protein to the phospholipase C is inhibited by protein kinase C. In contrast, neither TPA nor pertussis toxin inhibited the PDGF-induced phospholipase C reactions, indicating that a pertussis toxin-sensitive G protein is not involved in the coupling of the PDGF receptor to the phospholipase C and that this coupling is insensitive to protein kinase C. These results suggest that the regulatory mechanism of the PDGF receptor for the phospholipase C activation is different from that of the bombesin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号