首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
The effect of posture on maternal capillary blood Po2 and Pco2 was studied in pregnant and non-pregnant women. There was a significant decrease of Po2 (mean 13·0 mm. Hg) and significant decrease of Pco2 (mean 2·4 mm. Hg) when pregnant women sat up, but these changes did not occur in the non-pregnant. These findings may be relevant to debate on the optimum posture for labour.  相似文献   

2.
Ninety-one infants with respiratory failure secondary to primary pulmonary disease and with a birth weight of 1000 g. or over have been managed in a negative-pressure respirator (Air-Shields) over a three-year period. Of these the failure in 87 was due to respiratory distress syndrome (RDS) and in four it resulted from massive meconium aspiration. Respiratory failure was indicated initially by arterial blood gas tensions (while breathing 100% O2) of Po2 <40 mm. Hg, pH <7.10 and Pco2 >75 mm. Hg in the initial 47 cases; these levels were subsequently raised to Po2 < 50 mm. Hg, pH <7.20 and Pco2 >70 mm. Hg for the remainder. Fifty-four (59.3%) of the infants survived the use of the respirator and 47 of these (51.6%) were subsequently discharged alive and well. Mean time in hours to normalization of blood gas values while on the respirator were as follows: for Po2, 10.5; for pH, 11.6; and for Pco2, 22.6. These values indicate that the respirator is more efficient in promoting oxygenation (raising Po2) than ventilation (lowering Pco2). They also suggest that the observed acidosis is in large part secondary to the hypoxia rather than the result of co2 retention. For the survivors the average time of total respirator dependency before commencement of weaning was 53.7 hours. All the infants were managed without the use of endotracheal tubes although the use of the respirator and/or administration of 100% oxygen were either continuous or intermittent for periods of up to two weeks. There have been no instances of so-called respirator lung disease in the survivors or in those who died, which suggests that the use of high oxygen concentration by itself is not the major factor in the pathogenesis of this complication.  相似文献   

3.
Summary The interaction of allosteric effectors (CO2, ATP, H+) with respect to the oxygen affinity of carp hemoglobin was analyzed by determining oxygen binding curves spectrophotometrically in dilute solutions of stripped hemoglobin at 20°C. The pH range studied was 6.8–8.2.P CO2 was 0, 10 and 70 mmHg (0, 1.33 and 9.3 kPa). ATP/Hb4 was 0, 8 and 24. In the presence of either CO2 or ATP, the effects of the cofactors onP 50 were as expected over the whole pH range. In contrast to other published data, each cofactor also had a significant effect onP 50 in the presence of the other cofactor. Evidence was obtained that oxylabile carbamate is formed by carp hemoglobin and that the formation of carbamate persists at a lower level in the presence of ATP. The results support the view that the binding of ATP to carp hemoglobin requires only one terminal amino group, leaving the other N-terminal of the -chain free to react with CO2.  相似文献   

4.
Summary Adult carp were subjected to 1 mM environmental nitrite for 48 h and nitrite uptake and changes in blood respiratory properties, extracellular electrolyte composition and acid-base status were examined.A constant influx of nitrite caused an accumulation of NO 2 in plasma to 5.4 mM in 48 h. The fraction of methaemoglobin rose with plasma [NO 2 ] to 83%, and the arterial oxygen content decreased to extremely low values. Arterial increased as a compensation to this O2-shortage, whereas the O2 saturation of the functional (unoxidized) haemoglobin decreased, revealing a reduction in its O2 affinity.Blood haematocrit decreased as a result of red cell shrinkage, which caused very high red cell haemoglobin (Hb) concentrations. The erythrocytic nucleoside triphosphate (NTP) concentration showed a parallel increase whereby NTP/Hb, as well as the relative contributions of ATP and GTP to NTP, remained unchanged.Plasma [Cl] declined by 15 mM in 48 h, off-setting the plasma [NO 2 ] increase, minor changes in plasma [HCO 3 ] and a considerable increase in plasma [lactate]. Arterial pH and [HCO 3 ] rose slightly during the first 24 h of nitrite exposure, but returned to control values at 48 h. The rise in plasma [lactate] was not reflected in an extracellular metabolic acidosis. Plasma [K+] increased by 94% in 48 h, revealing an uncompensated extracellular hyperkalemia, whereas plasma [Na+] decreased, and plasma [Ca++] was unchanged. Plasma osmolality remained essentially constant.The NO 2 accumulation could be reversed by transfer of the fish to NO 2 -free water, but nitrite off-loading was slower than the preceding NO 2 loading.Abbreviations Hb hemoglobin - NTP nucleoside triphosphate - Hct hematocrit - fractional saturation of Hb with oxygen  相似文献   

5.
Summary This study concerns the adaptation of oxygen transporting function of carp blood to environment hypoxia, tracing the roles played by erythrocytic cofactors, inorganic cations, carbon dioxide and hemoglobin multiplicity.Carp acclimated to hypoxia ( 30 mmHg) display striking increases in blood oxygen affinity compared to normoxic ( =120–150 mm) specimens (P 50's are 3.0 and 7.0 mm, respectively, at pH 7.9 and 20°C). This correlates with a marked decrease in erythrocytic concentrations of NTP (nucleoside triphosphates) (Figs. 1, 2, Table 1), permitting investigation of the time-course of the response (Fig. 3). That GTP (guanosine triphosphate) plays a greater role than ATP in the allosteric regulation of blood oxygen affinity, follows from greater decreases in its concentration during hypoxia, and its greater effect on oxygen affinity of the hemoglobin (Figs. 1, 5). It is furthermore shown that divalent cations (which complex with NTP) inhibit the regulatory role of GTP on O2 affinity to a lesser extent than that of ATP (Fig. 7). However, the divalent cation, Mg2+, occurs in similarly high concentrations in the erythrocytes of hypoxic and normoxic fish (Table 1). CO2 specifically depresses the O2 affinity of carp hemoglobin, but below pH 8.3, its effect is obliterated by ATP and GTP suggesting that the chains are the main sites for CO 2 binding. Four carp hemoglobin components are isolated and their oxygen-binding properties compared with those of the cofactor-free hemolysate (Figs. 4, 8, 9). The results are discussed comparatively with special reference to hemoglobin function in fish and mammals.  相似文献   

6.
Chemolithotrophic nitrifying bacteria are dependent on the presence of oxygen for the oxidation of ammonium via nitrite to nitrate. The success of nitrification in oxygen-limited environments such as waterlogged soils, will largely depend on the oxygen sequestering abilities of both ammonium- and nitrite-oxidizing bacteria. In this paper the oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter winogradskyi serotype agilis were determined with cells grown in mixed culture in chemostats at different growth rates and oxygen tensions.Reduction of oxygen tension in the culture repressed the oxidation of nitrite before the oxidation of ammonium was affected and hence nitrite accumulated. K m values found were within the range of 1–15 and 22–166 M O2 for the ammonium- and nitrite-oxidizing cells, respectively, always with the lowest values for the N. europaea cells. Reduction of the oxygen tension in the culture lowered the half saturation constant K m for oxygen of both species. On the other hand, the maximal oxygen consumption rates were reduced at lower oxygen levels especially at 0 kPa. The specific affinity for oxygen indicated by the V max/K m ratio, was higher for cells of N. europaea than for N. winogradskyi under all conditions studied. Possible consequences of the observed differences in specific affinities for oxygen of ammonium-and nitrite-oxidizing bacteria are discussed with respect to the behaviour of these organisms in oxygen-limited environments.  相似文献   

7.
Comparison was made of 53 “arterialized” capillary (heel prick) samples with descending aortic blood in 26 babies, of whom 24 were less than one week old and 18 had R.D.S.“Arterialized” capillary blood is an accurate and practical means of assessing aortic blood pH and Pco2 over a range of 6.69 to 7.54 and 18 to 94 mm. Hg respectively.“Arterialized” capillary sampling is a reliable means of assessing descending aortic Po2 when the “arterialized” capillary value is less than 60 mm. Hg.When higher than 60 mm. Hg the “arterialized” capillary oxygen tension may be considerably less than that of the blood in the descending aorta, hence the “arterialized” capillary blood oxygen tension method is unreliable in estimating systemic oxygenation when the descending aortic oxygen tension is more than 60 mm. Hg.  相似文献   

8.
The occurrence of summer mortalities of the commercially important Pacific oyster, Crassostrea gigas, has increased in recent years. These mortality events occur during the late summer when water temperatures are at their highest. Many theories have been proposed concerning the causes including reproductive stress, environmental stress, disease, or synergistic interactions of these factors. C. gigas are grown intertidally and are exposed to the air (emersed) for hours at a time. These organisms can experience extreme changes in temperature during the course of a day. An oyster closed during emersion depletes the oxygen stores to near zero within the shell and builds up CO2 causing a decrease in tissue pH. The focus of this study is to determine the respiratory (pH, Po2, Pco2 and total CO2) and immune responses of oysters exposed to air at normal seasonal temperatures, and to determine whether these stresses associated with emersion inhibit the immune system of the oyster and contribute to the summer mortalities. The respiratory variables of the hemolymph of oysters submerged at 18 °C (pH = 7.52 ± 0.04 S.E.M., Po2 = 7.09 ± 0.53 S.E.M. kPa and Pco2 = 0.20 ± 0.03 S.E.M. kPa) varied significantly from oysters emersed for four hours at 22°C (pH = 7.11 ± 0.03 S.E.M., Po2 = 3.83 ± 0.15 S.E.M. kPa, Pco2 = 0.36 ± 0.03 S.E.M. kPa) and those emersed for four hours at 30 °C (pH = 6.84 ± 0.02 S.E.M., Po2 = 3.10 ± 0.12 S.E.M. kPa, Pco2 = 1.31 ± 0.06 S.E.M. kPa). The ability of hemocytes to kill the bacterium Vibrio campbellii was assessed using an in vitro assay to generate a killing index. There was no significant difference in the killing index between pH treatment groups (p = 0.856): at pH 7.6 killing index = 50.2% ± 2.33 S.E.M., at pH 6.6 killing index = 52.3% ± 3.67 S.E.M.. Temperature was the only factor to significantly affect the killing indices among temperature and oxygen treatment groups. The killing index was lowest (29.3% ± 3.25 S.E.M.) at 30 °C and 7% oxygen, simulating in vivo oxygen pressure in well-aerated conditions and 30 °C and 3% oxygen, simulating in vivo oxygen pressure in hypoxia (30.5% ± 3.25 S.E.M.), compared with the index in 7% oxygen at low temperature (18 °C) (44.4% ± 4.50 S.E.M.) or compared with low oxygen (3%) at low temperature (18 °C) (39.7% ± 2.51 S.E.M.). The seasonal and diurnal rise in temperature may, therefore, be an important factor contributing to summer mortalities of C. gigas.  相似文献   

9.
Effects of experimental ventilation and ambient Po2 on cutaneous O2 uptake in vitro were studied in the carp, Cyprinus carpio. Oxygen uptake rate of the isolated cutaneous tissue was determined by ventilating the epidermis side of the skin with normoxic water in flow-through respirometers. Oxygen uptake rate of the skin increased with ventilation rate across the skin between 2.5 and 40 ml/min and became 3.2 nmol/cm2/min at a flow rate of 40 ml/min, which corresponds to an apparent water velocity of 1.1 cm/sec. At a ventilation rate of 10 ml/min, oxygen uptake rate of the skin increased with the ambient Po2 between 115 and 230 Torr and became constant (3.8 nmol/cm2/min) between 230 and 295 Torr. When both sides of the skin were ventilated with normoxic water, oxygen uptake rate of the skin increased and became 3.7 nmol/cm2/min at a flow rate of 20–40 ml/min. These results suggest that the oxygen requirement of the skin is 3.7–3.8 nmol/cm2/min at 21.3°C and that cutaneous O2 uptake in vitro depends on experimental ventilation and ambient Po2, consistent with values measured in vitro in the carp (ref).  相似文献   

10.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

11.
Summary Elastically-suspended microelectrodes were used in the vascularly isolated blood-perfused carotid body of fetal and newborn lambs as well as of 6–7-day-old lambs to measure local blood flow velocities by means of hydrogen clearance. Fetal sheep (n=9) carotid bodies elicited mean local blood velocity values between 0.008 and 0.11 cm·s–1, whereas newborn lamb carotid bodies (n=7) showed values between 0.008 and 0.067 cm·s–1 at a perfusion pressure range between 30 and 150 mmHg. The 6–7-day-old lamb carotid bodies (n=5) were characterized by values of 0.003 and 0.049 cm·s–1 over the same perfusion pressure range. Fetal carotid body values were statistically significantly higher than the values of the 6–7-day-old lamb carotid bodies, whereas the newborn carotid body values showed no significant difference to both other groups. The flow velocity/perfusion pressure relationship peaked at perfusion pressure values between 100 and 150 mmHg in all groups with a reduced steepness in the lamb carotid body. It is concluded that local blood flow velocities in the carotid body are similar to that in other organs, and that after birth local blood flow velocities in the carotid body decrease during the first week of life, probably induced by vasoconstriction, changed blood gas values, and/or increasing shunt flow.Abbreviations significance level - D diffusion coefficient - i.v. intravenous - n number of experiments - PCO 2 carbon dioxide partial pressure - pH negative logarithm of hydrogen ion concentration - PH 2 hydrogen partial pressure - Po PH2 with perfusion - P PH2 without perfusion - PO 2 oxygen partial pressure - PP perfusion pressure - r radius  相似文献   

12.
Chlorate resistant spontaneous mutants ofAzospirillum spp. (syn.Spirillum lipoferum) were selected in oxygen limited, deep agar tubes with chlorate. Among 20 mutants fromA. brasilense and 13 fromA. lipoferum all retained their functional nitrogenase and 11 from each species were nitrate reductase negative (nr). Most of the mutants were also nitrite reductase negative (nir), only 3 remaining nir+. Two mutants from nr+ nir+ parent strains lost only nir and became like the nr+ nir parent strain ofA. brasilense. No parent strain or nr+ mutant showed any nitrogenase activity with 10 mM NO 3 . In all nr mutants, nitrogenase was unaffected by 10 mM NO 3 . Nitrite inhibited nitrogenase activity of all parent strains and mutants including those which were nir. It seems therefore, that inhibition of nitrogenase by nitrate is dependent on nitrate reduction. Under aerobic conditions, where nitrogenase activity is inhibited by oxygen, nitrate could be used as sole nitrogen source for growth of the parent strains and one mutant (nr nir) and nitritite of the parent strains and 10 mutants (all types). This indicates the loss of both assimilatory and dissimilatory nitrate reduction but only dissimilatory nitrite reduction in the mutants selected with chlorate.  相似文献   

13.
Rainbow trout (Salmo gairdneri Richardson) were subjected to 15 min anaesthesia with unbuffered MS 222, neutralized MS 222 and benzocaine with and without physical stress. Blood samples were taken through cannulae inserted into the dorsal aorta. The Hct values and Hb concentrations increased with all the anaesthetics, which also caused swelling of erythrocytes. The initial values were restored within 4–12 h of recovery. Each anaesthetic elevated the blood lactate concentration, but the initial level was regained within 12 h. The blood glucose level decreased the most during anaesthesia with unbuffered MS 222, but the initial level was rapidly restored. Benzocaine caused the least hypoglycaemia during anaesthesia, but the subsequent hyperglycaemia, as in the fish anaesthetized with neutralized MS 222, lasted 24 h. Neutralized MS 222 and benzocaine elevated the plasma K + concentration more rapidly than unbuffered MS 222. The initial levels were regained in 4 days. All anaesthetics raised the Mg ++ concentration. The Po2 in the dorsal aorta decreased during anaesthesia with unbuffered MS 222 by about 85 mmHg, while the Pco2 increased by about 1.5 mmHg. Their initial levels were regained within 20 min. During anaesthesia the pH value decreased by 0.3 units and returned to the initial value within 2–4 h of recovery. MS 222 seemed to be an asphyxiant.  相似文献   

14.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

15.
To find out how the polychaete Marenzelleria cf. viridis could spread successfully into the habitat of the Darss-Zingst Bodden Chain, one important environmental factor for sediment dwelling animals was examined: hydrogen sulphide. To investigate the stress of this environmental factor, hydrogen sulphide was continuously examined in the pore water of the sediment and burrows of M. cf. viridis. Metabolic activity was recorded by direct and indirect calorimetry. Depending on water temperature, organic matter content of the sediment and salinity, the sulphide concentration in the pore water varied between 1.5 and 4.2 mmol l-1 being high during summer and in winter when the sediment and overlying water was ice covered. In microcosm experiments water of M. cf. viridis-burrows showed variations in sulphide between 145 and 210 µmol l-1 but pore water concentration was much higher (6.5 mmol l-1). In the presence of oxygen animals exhibited an accelerated metabolic rate which was met by a fully aerobic metabolism at Po2 of 20 to 7.5 kPa and sulphide concentration of 215–245 µmol l-1. When oxygen is absent the heat production was only slightly elevated (103%) when compared to the anoxic control. The elevated heat production of the animals during sulphide exposure and oxygen may be due to detoxification processes. In this case thiosulphate is formed probably via mitochondrial oxidation and therefore may account for additional ATP-gain.  相似文献   

16.
Filamentous algae in eutrophic carp ponds in South Bohemia (Central Europe) were studied from 1988 to 1990. High biomass (490 g DW m-2) was attained by Cladophora fracta (O. F. Müll. ex Vahl) Kütz. after two months of growth. This marked growth depleted inorganic carbon in the water, but did not decrease the concentration of tissue nutrients. Laboratory measurements of final pH indicate that all the filamentous algae studied, except for Tribonema, are very efficient HCO3 - users. An extremely high pH of 11.6 and oxygen concentration of 32 mg l-1 were measured in the algal mats. High pH resulted in CaCO3 precipitation, visible as white incrustations on algal filaments. The amount of precipitated CaCO3 reached 134 kg ha-1. After reaching peak biomass, 90% of the Cladophora decomposed over the next 95 days.The highest net photosynthetic rate in C. fracta was measured between pH range 8.5–10.0 and oxygen concentrations of 7–12 mg l-1. Optimum temperature for photosynthesis was between 17–22°C.  相似文献   

17.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   

18.
In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme [C. Lillo et al. (2003) Plant J 35:566–573]. When cut leaves or roots of this line (S521) were placed in darkness in a buffer containing 50 mM KNO3, nitrite was excreted from the tissue at rates of 0.08–0.2 mol (g FW)–1 h–1 for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1–3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S521, although 20–40 mol (g FW)–1 nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S521 also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S521 was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating.Abbreviations NR Nitrate reductase - NO Nitric oxide - Ser Serine - WT Wild type  相似文献   

19.
There was no direct effect of copper on the ontogeny or function of the heart of the brine shrimp Artemia franciscana in sea water (salinity= 36 mg·ml-1, 25°C). There was, however, an indirect effect as an increase in copper concentration resulted in a reduced growth rate. There was no difference between the critical O2 tensions of newly hatched (stage 0/1) nauplii of control and treated (<0.32 and 10.11 mol·l-1 copper, respectively) individuals. However by developmental stages 4–6, when both the heart and thoracic gills are in the process of differentiating, respiratory performance had improved (i.e. critical O2 tension decreased from 6.27±0.45 to 4.69±0.24 kPa) in control but not in copper-treated individuals. It is suggested that respiratory impairment of stages 4–6 individuals is unlikely to be related to differences in cardiac performance or cellular respiration. Instead it may be related to metal-related damage to newly differentiating gill tissue and/or by copper in some way compromising the normal ontogenic shift in haemoglobin O2 affinity. Copper-related respiratory impairment develops at a critical point in brine shrimp organogenesis when a good supply of O2 is essential for normal development and if compromised may reduce the ability of this species to survive copper exposure.Abbreviations BL body length - BW body weight - HR heart rate - HM heavy metals - SW sea water - P c critical oxygen tension  相似文献   

20.
A laboratory scale upflow biological aerated filter (BAF) packed with a porous expanded polyurethane medium was developed to nitrify ammonium to nitrite selectively. Greater than 95% removal of ammonium was achieved up to 2 kg NH4 +-N m–3 d. NO2 -N was accumulated up to 60% of the total (NO2 + NO3 )-N when oxygen was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号