首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions through multiple types of LPA receptors. Here we explore the role of LPA receptor subtypes in cortical astrocyte functions. Astrocytes cultured under serum-free conditions were found to express the genes of five LPA receptor subtypes, lpa1 to lpa5. When astrocytes were treated with dibutyryl cyclic adenosine monophosphate, a reagent inducing astrocyte differentiation or activation, lpa1 expression levels remained unchanged, but those of other LPA receptor subtypes were relatively reduced. LPA stimulated DNA synthesis in both undifferentiated and differentiated astrocytes, but failed to do so in astrocytes prepared from mice lacking lpa1 gene. LPA also inhibited [3H]-glutamate uptake in both undifferentiated and differentiated astrocytes; and LPA-induced inhibition of glutamate uptake was still observed in lpa1-deficient astrocytes. Taken together, these observations demonstrate that LPA1 mediates LPA-induced stimulation of cell proliferation but not inhibition of glutamate uptake in astrocytes.  相似文献   

2.
Lysophosphatidic acid (LPA) is a phospholipid mediator with a variety of biological activities. It remains unknown, however, which cells in the brain express the LPA receptor. The present study was undertaken to identify cells in the rat brain expressing functional LPA receptors, and to explore biological roles of LPA in these cells. We found that the LPA receptor was most dominantly expressed in rat astrocytes, determined by LPA-induced Ca2+ imaging, and by Northern blot analyses. LPA induced a mitogenic response and expression of immediate early genes in astrocytes, through pertussis-toxin sensitive G-protein(s). LPA also stimulated the expression of various cytokine genes, including nerve growth factor, interleukin (IL)-1, IL-3 and IL-6. Thus, astrocytes are the major target of LPA in the brain. We propose that LPA may play important roles in neuronal development, gliosis and wound-healing process in the brain.  相似文献   

3.
4.
Interleukin-1 beta (IL-1 beta) is a pro-inflammatory cytokine produced in the brain by endogenous microglial cells responding to injury. Levels of IL-1 beta are elevated in several neurodegenerative disorders, including Alzheimer's disease. IL-1 beta, which can act as a mitogen for astrocytes, also elicits the expression and secretion of multiple factors and paracrine 'second messengers' such as other cytokines, nerve growth factor, prostaglandins and nitric oxide that may in turn modulate neuronal and glial responses to injury. Utilizing giant, high-resolution two-dimensional gel electrophoresis, we have sought to more fully define the potential range of protein mediators that are secreted by astrocytes treated with IL-1 beta. In cultured rat astrocytes, we observe dramatic increases in the secretion of eight different protein species after 24 h of treatment with human recombinant IL-1 beta (1 U/ml). Seven of the proteins are also induced by tumor necrosis factor-alpha or basic fibroblast growth factor. Based on immunoprecipitation with specific antisera, we have identified three of these proteins as plasminogen activator inhibitor type-1, ceruloplasmin, and complement component C3. The identities of the other proteins, including the IL-1 beta-specific induction, are currently unknown. Characterization of these downstream modulators of IL-1 beta action complements gene-based approaches and will provide a better understanding of astrocyte responses to injury as well as markers for astrocyte activation in neurodegenerative diseases.  相似文献   

5.
Astrocytes become activated in response to brain injury, as characterized by increased expression of glial fibrillary acidic protein (GFAP) and increased rates of cell migration and proliferation. Damage to brain cells causes the release of cytoplasmic nucleotides, such as ATP and uridine 5'-triphosphate (UTP), ligands for P2 nucleotide receptors. Results in this study with primary rat astrocytes indicate that activation of a G protein-coupled P2Y(2) receptor for ATP and UTP increases GFAP expression and both chemotactic and chemokinetic cell migration. UTP-induced astrocyte migration was inhibited by silencing of P2Y(2) nucleotide receptor (P2Y(2)R) expression with siRNA of P2Y(2)R (P2Y(2)R siRNA). UTP also increased the expression in astrocytes of alpha(V)beta(3/5) integrins that are known to interact directly with the P2Y(2)R to modulate its function. Anti-alpha(V) integrin antibodies prevented UTP-stimulated astrocyte migration, suggesting that P2Y(2)R/alpha(V) interactions mediate the activation of astrocytes by UTP. P2Y(2)R-mediated astrocyte migration required the activation of the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, responses that also were inhibited by anti-alpha(V) integrin antibody. These results suggest that P2Y(2)Rs and their associated signaling pathways may be important factors regulating astrogliosis in brain disorders.  相似文献   

6.
Lysophosphatidic acid (LPA) is involved in physiological and pathological states, including in neural development and inflammation. We assessed the expression pattern of the LPA receptors 1-3 and of LPA-producing enzyme autotaxin in post-mortem human brain tissue, both in normal individuals and in individuals who died following traumatic brain injury. We found that LPA receptors and autotaxin are weakly expressed in the normal control adult brain. Quantitative PCR for the LPA receptors and autotaxin mRNA showed an increase of LPAR2 and a decrease of autotaxin mRNA expression in the cortex following brain injury. Immunohistochemical analysis showed that LPAR1 colocalized with astrocytes and that LPAR2 is present on the ependymal cells lining the lateral ventricle in the brain samples from individuals who died following severe head injury. This work shows for the first time that key components of the LPA pathway are modulated following TBI in humans.  相似文献   

7.
8.
9.
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.  相似文献   

10.
Astrocytes constitute a major cell population in the brain with a myriad of essential functions, yet we know remarkably little about the signaling pathways and mechanisms that direct astrocyte maturation. To explore the signals regulating astrocyte development, we prospectively purified and cultured immature postnatal rodent astrocytes. We identified fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) as robust trophic factors for immature astrocytes. We showed that astrocytes respond directly to BMPs via phosphorylation of the smad1/5/8 pathway. In vitro, BMP signaling promoted immature astrocytes to adopt multiple characteristics of mature astrocytes, including a more process-bearing morphology, aquaporin-4 (AQP4) and S100β immunoreactivity, limited proliferation, and strong downregulation of epidermal growth factor receptor (EGFR). In vivo, activation of the smad1/5/8 pathway in astrocytes was seen during early postnatal development, but inhibition of astrocyte proliferation was not observed. These insights can aid in the further dissection of the mechanisms and pathways controlling astrocyte biology and development.  相似文献   

11.
Kim J  Keys JR  Eckhart AD 《Cellular signalling》2006,18(10):1695-1701
Many G protein-coupled receptors can couple to multiple G proteins to convey their intracellular signaling cascades. The receptors for lysophosphatidic acid (LPA) possess this ability. LPA receptors are important mediators of a wide variety of biological actions including cell migration, proliferation and survival which are processes that can all have a considerable impact on vascular smooth muscle (VSM) and blood vessels. To date, confirmation of G proteins involved has mostly relied on the inhibition of Gi-mediated signaling via pertussis toxin (PTx). We were interested in the specific involvement of LPA-Gq-mediated signaling therefore we isolated aorta VSM cells (VSMCs) from transgenic mice that express a peptide inhibitor of Gq, GqI, exclusively in VSM. We detected both LPA1 and LPA2 receptor expression in mouse VSM whereas LPA1 and LPA3 were expressed in rat VSM. SM22-GqI did not alter LPA-induced migration but it was sufficient to attenuate LPA-induced proliferation. GqI expression also attenuated LPA-induced ERK1/2 and Akt activation by 40-50%. To test the feasibility of this peptide as a potential therapeutic agent, we also generated adenovirus encoding the GqI. Transient expression of GqI was capable of inhibiting both LPA-induced migration and proliferation of VSMCs isolated from rat and mouse. Furthermore, ERK activation in response to LPA was also attenuated in VSMCs with Adv-GqI. Therefore, LPA receptors couple to Gq in VSMC and mediate migration and proliferation which may be mediated through activation of ERK1/2 and Akt. Our data also suggest that both chronic and transient expression of the GqI peptide is an effective strategy to lower Gq-mediated LPA signaling and may be a successful therapeutic strategy to combat diseases with enhanced VSM growth such as occurs following angioplasty or stent implantation.  相似文献   

12.
Protein C anticoagulant system is a multifunctional cofactor-dependent system. In addition to anticoagulant function, activated protein C (APC) also exhibits neuroprotective activity in hypoxia and stroke, but there are no data on potential effects of APC on astrocytes. In the present work we have studied the influence of APC and thrombin on rat astrocytes in primary culture. It was found that thrombin at concentrations above 10 nM (1 U/mL) induced significant activation in the cultured astrocytes resulting in reactive astrogliosis. The cultures exposed to thrombin for 24 h demonstrated a significant increase in proliferation and the S100b protein expression. Thrombin at high concentrations produced visible changes in the cytoskeleton of astrocytes, in particular, an increase in the number of stress fibers in the cultured cells. Moreover, thrombin apparently affected astrocyte migration. Thus, the treatment of serum-starved astrocytes with thrombin resulted in changes in cell monolayer uniformity and formation of “free fields”. APC prevented thrombin-induced proliferation of astrocytes and the S100b protein expression, reducing the parameters under study to the control values. In addition, APC reduced thrombin-induced disorganization of fibrils and formation of “free fields”. The results have demonstrated a new aspect of the protective effect of APC, which suppresses astrocyte activation induced by the proinflammatory effect of thrombin. It suggests a potential application of APC as a regulator of astrogliosis in pathological brain conditions.  相似文献   

13.
Besides their traditional role in maintaining CNS homeostasis, astrocytes also participate in innate immune responses. Indeed, we have previously demonstrated that astrocytes are capable of recognizing bacterial pathogens such as Staphylococcus aureus , a common etiologic agent of CNS infections, and respond with the robust production of numerous proinflammatory mediators. Suppression of Poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, has been shown to attenuate inflammatory responses in several cell types including mixed glial cultures. However, a role for PARP-1 in regulating innate immune responses in purified astrocytes and the potential for multiple PARP family members to cooperatively regulate astrocyte activation has not yet been examined. The synthetic PARP-1 inhibitor PJ-34 attenuated the production of several proinflammatory mediators by astrocytes in response to S. aureus stimulation including nitric oxide, interleukin-1 beta, tumor necrosis factor-alpha, and CCL2. The release of all four mediators was partially reduced in PARP-1 knockout (KO) astrocytes compared to wild-type cells. The residual inflammatory mediator expression detected in PARP-1 KO astrocytes was further blocked with PJ-34, suggesting either non-specific effects of the drug or actions on alternative PARP isoforms. Reduction in PARP-2 or PARP-3 expression by siRNA knock down revealed that these isoforms also contributed to inflammatory mediator regulation in response to S. aureus . Interestingly, the combined targeting of either PARP-1/PARP-2 or PARP-2/PARP-3 attenuated astrocyte inflammatory responses more effectively compared to knock down of either PARP alone, suggesting cooperativity between PARP isoforms. Collectively, these findings suggest that PARPs influence the extent of S. aureus -induced astrocyte activation.  相似文献   

14.
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine produced in the brain by endogenous microglial cells responding to injury. Levels of IL-1β are elevated in several neurodegenerative disorders, including Alzheimer's disease. IL-1β, which can act as a mitogen for astrocytes, also elicits the expression and secretion of multiple factors and paracrine ‘second messengers’ such as other cytokines, nerve growth factor, prostaglandins and nitric oxide that may in turn modulate neuronal and glial responses to injury. Utilizing giant, high-resolution two-dimensional gel electrophoresis, we have sought to more fully define the potential range of protein mediators that are secreted by astrocytes treated with IL-1β. In cultured rat astrocytes, we observe dramatic increases in the secretion of eight different protein species after 24 h of treatment with human recombinant IL-1β (1 U/ml). Seven of the proteins are also induced by tumor necrosis factor-α or basic fibroblast growth factor. Based on immunoprecipitation with specific antisera, we have identified three of these proteins as plasminogen activator inhibitor type-1, ceruloplasmin, and complement component C3. The identities of the other proteins, including the IL-1β-specific induction, are currently unknown. Characterization of these downstream modulators of IL-1β action complements gene-based approaches and will provide a better understanding of astrocyte responses to injury as well as markers for astrocyte activation in neurodegenerative diseases.  相似文献   

15.
Astrocytes are major supportive glia and immune modulators in the brain; they are highly secretory in nature and interact with other cell types via their secreted proteomes. To understand how astrocytes communicate during neuroinflammation, we profiled the secretome of human astrocytes following stimulation with proinflammatory factors. A total of 149 proteins were significantly upregulated in stimulated astrocytes, and a bioinformatics analysis of the astrocyte secretome revealed that the brain renin–angiotensin system (RAS) is an important mechanism of astrocyte communication. We observed that the levels of soluble form of aminopeptidase N (sANPEP), an RAS component that converts angiotensin (Ang) III to Ang IV in a neuroinflammatory milieu, significantly increased in the astrocyte secretome. To elucidate the role of sANPEP and Ang IV in neuroinflammation, we first evaluated the expression of Ang IV receptors in human glial cells because Ang IV mediates biological effects through its receptors. The expression of angiotensin type 1 receptor was considerably upregulated in activated human microglial cells but not in human astrocytes. Moreover, interleukin-1β release from human microglial cells was synergistically increased by cotreatment with sANPEP and its substrate, Ang III, suggesting the proinflammatory action of Ang IV generated by sANPEP. In a mouse neuroinflammation model, brain microglial activation and proinflammatory cytokine expression levels were increased by intracerebroventricular injection of sANPEP and attenuated by an enzymatic inhibitor and neutralizing antibody against sANPEP. Collectively, our results indicate that astrocytic sANPEP–induced increase in Ang IV exacerbates neuroinflammation by interacting with microglial proinflammatory receptor angiotensin type 1 receptor, highlighting an important role of indirect crosstalk between astrocytes and microglia through the brain RAS in neuroinflammation.  相似文献   

16.
Peroxisome proliferator-activated receptors (PPARs) play key roles in lipid metabolism and inflammation. Recent studies indicated that PPARs are also capable of modulating immune responses. Microglia and astrocytes are cells resident to the central nervous system (CNS) that function to protect against environmental insults including pathogens. However, following CNS inflammation, reactive gliosis occurs which is characterized by astrocyte hypertrophy and increased glial proliferation. Under such conditions, glia can become chronically activated and may contribute to the neuropathology associated with a variety of neuroinflammatory disorders including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. A review of the role of PPAR agonists in modulating glial cell activation is presented. Included is a discussion of the molecular mechanisms of action of these PPAR agonists and the potential utility of these agents for the treatment of neuroinflammatory disorders.  相似文献   

17.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

18.
Astrocytes are glial cells in the central nervous system (CNS) that play key roles in brain physiology, controlling processes, such as neurogenesis, brain energy metabolism and synaptic transmission. Recently, immune functions have also been demonstrated in astrocytes, influencing neuronal survival in the course of neuroinflammatory pathologies. In this regard, PKCepsilon (PKCε) is a protein kinase with an outstanding role in inflammation. Our previous findings indicating that PKCε regulates voltage-dependent calcium channels as well as morphological stellation imply that this kinase controls multiple signalling pathways within astrocytes, including those implicated in activation of immune functions. The present study applies proteomics to investigate new protein targets of PKCε in astrocytes. Primary astrocyte cultures infected with an adenovirus that expresses constitutively active PKCε were compared with infection controls. Two-dimensional gel electrophoresis clearly detected 549 spots in cultured astrocytes, and analysis of differential protein expression revealed 18 spots regulated by PKCε. Protein identification by mass spectrometry (nano-LC–ESI-MS/MS) showed that PKCε targets molecules with heterogeneous functions, including chaperones, cytoskeletal components and proteins implicated in metabolism and signalling. These results support the notion that PKCε is involved in astrocyte activation; also suggesting that multiple astrocyte-dependent processes are regulated by PKCε, including those associated to neuroinflammation.  相似文献   

19.
Chen  Mingming  Guo  Linlu  Hao  Jie  Ni  Jie  Lv  Qunyu  Xin  Xiaoyan  Liao  Hong 《Cellular and molecular neurobiology》2022,42(4):1153-1166

Astrogliosis after brain trauma can have a significant impact on functional recovery. However, little is known about the mechanisms underlying astrocyte proliferation and subsequent astrogliosis. In this study, we established a cortical stab wound injury mouse model and observed dramatic astrocyte activation and nerve growth factor receptor (p75NTR) upregulation near the lesion. We also found profound alterations in the cell cycle of astrocytes near the lesion, with a switch from a mitotically quiescent (G0) phase to the G2/M and S phases. However, no changes in the level of astrocyte apoptosis were observed. Cell cycle progression to the G2/M and S phases and CDK2 protein levels in response to cortical stab wound was inhibited after p75NTR knockdown in mouse astrocytes. Conversely, p75NTR overexpression in mouse astrocytes was sufficient in promoting cell cycle progression. In conclusion, our results suggested that p75NTR upregulation in astrocytes after brain injury induces cell cycle entry by promoting CDK2 expression and promoting astrocyte proliferation. Our findings provided a better understanding of astrocytic responses after cortical stab wound injury in mice.

  相似文献   

20.
Perivascular astrocyte end feet closely juxtapose cerebral blood vessels to regulate important developmental and physiological processes including endothelial cell proliferation and sprouting as well as the formation of the blood‐brain barrier (BBB). The mechanisms underlying these events remain largely unknown due to a lack of experimental models for identifying perivascular astrocytes and distinguishing these cell types from other astroglial populations. Megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) is a transmembrane protein that is expressed in perivascular astrocyte end feet where it controls BBB development and homeostasis. On the basis of this knowledge, we used T2A peptide‐skipping strategies to engineer a knock‐in mouse model in which the endogenous Mlc1 gene drives expression of enhanced green fluorescent protein (eGFP), without impacting expression of Mlc1 protein. Analysis of fetal, neonatal and adult Mlc1‐eGFP knock‐in mice revealed a dynamic spatiotemporal expression pattern of eGFP in glial cells, including nestin‐expressing neuroepithelial cells during development and glial fibrillary acidic protein (GFAP)‐expressing perivascular astrocytes in the postnatal brain. EGFP was not expressed in neurons, microglia, oligodendroglia, or cerebral vascular cells. Analysis of angiogenesis in the neonatal retina also revealed enriched Mlc1‐driven eGFP expression in perivascular astrocytes that contact sprouting blood vessels and regulate blood‐retinal barrier permeability. A cortical injury model revealed that Mlc1‐eGFP expression is progressively induced in reactive astrocytes that form a glial scar. Hence, Mlc1‐eGFP knock‐in mice are a new and powerful tool to identify perivascular astrocytes in the brain and retina and characterize how these cell types regulate cerebral blood vessel functions in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号