首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular forms of cytidylyltransferase (EC 2.7.7.15) in rat lung, rat liver, Hep G2 cells, A549 cells and alveolar Type II cells from adult rats were separated by glycerol density centrifugation. Cytosol prepared from lung, Hep G2 cells, A549 cells and alveolar Type II cells contained two forms of the enzyme. These species were identical to the L-Form and H-Form isolated previously from lung cytosol by gel filtration. Liver cytosol contained only the L-Form. Rapid treatment of Hep G2 cells with digitonin released all of the cytoplasmic cytidylyltransferase activity. The released activity was present in both H-Form and L-Form. The molecular weight of L-Form was determined from sedimentation coefficients and Stokes radius values to be 97,690 +/- 10,175. Thus, the L-Form appears to be a dimer of the Mr 45,000 catalytic subunit. The f/f degrees value of 1.5 indicated that the protein molecule has an axial ratio of 10, assuming a prolate ellipsoid shape. The estimated molecular weight of the H-Form was 284,000 +/- 25,000. The H-Form was dissociated into L-Form by incubation of cytosol at 37 degrees C. Triton X-100 (0.1%) and chlorpromazine (1.0 mM) also dissociated the H-Form into L-Form. Western blot analysis indicated that both forms contained the catalytic subunit. An increase in Mr 45,000 subunit coincided with the increase in cytidylyltransferase activity in L-Form, which resulted from the dissociated of H-Form. The L-Form was dependent on phospholipid for activity. The H-Form was active without lipid. Phosphatidylinositol was present in the H-Form isolated from Hep G2 cells. The phosphatidylinositol dispersed when the H-Form was dissociated into L-Form. Phosphatidylinositol and phosphatidylglycerol cause L-Form to aggregate into a form similar to H-Form. Phosphatidylcholine/oleic acid (1:1 molar ratio) and oleic acid also aggregated the L-Form. Phosphatidylcholine did not produce aggregation. We conclude that the H-Form is the active form of cytidylyltransferase in cytoplasm. The H-Form appears to be a lipoprotein consisting of an apoprotein (L-Form dimer of the Mr 45,000 subunit) complexed with lipids. A change in the relative distribution of H-Form and L-Form in cytosol would alter the cellular activity and thus may be important in the regulation of phosphatidylcholine synthesis.  相似文献   

2.
The influence of chlorpromazine and trifluoperazine on phosphatidylcholine biosynthesis in HeLa cells was investigated. HeLa cells were prelabeled with [Me-3H]choline for 1 h. The cells were subsequently incubated with various concentrations of drugs. Both compounds were potent inhibitors of phosphatidylcholine biosynthesis, with 50% inhibition by 5 micron of either drug. Analysis of the radioactivity in the soluble precursors indicated a block in the conversion of phosphocholine to CDPcholine catalyzed by CTP:phosphocholine cytidylyltransferase (CTP:cholinephosphate cytidylyltransferase, EC 2.7.7.15). Inhibition by these drugs was slowly reversed after incubation for more than 2 h, or was immediately abolished when 0.4 mM oleate was included in the cell medium or when the drug-containing medium was removed. The subcellular location of the cytidylyltransferase was unaffected by either drug, nor did the drugs alter the rate of release of cytidylyltransferase from HeLa cells by digitonin treatment. The drugs had a direct inhibitory effect on cytidylyltransferase activity in HeLa cell postmitochondrial supernatants. Half-maximal inhibition was achieved with 30 microM trifluoperazine and 50 microM chlorpromazine. These drugs did not change the apparent Km of the cytidylyltransferase for CTP or phosphocholine. Inhibition of cytidylyltransferase by these compounds was reversible with exogenous phospholipid or oleate in the enzyme assay. The data indicate that both drugs inhibit phosphatidylcholine synthesis by an effect on the cytidylyltransferase. The mechanism of action remains unknown at this time.  相似文献   

3.
Short time effect of oleate and 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphocholine (AMGPC) on choline incorporation into phosphatidylcholines were studied in HL-60 cells. The non lytic concentration of 50 microM oleate induced a three-fold increase in [3H]choline incorporation into phosphatidylcholine. This stimulation was accompanied by a translocation of the CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) from cytosol to membranes. By contrast, the ether-lipid AMGPC inhibited [3H]choline incorporation into phosphatidylcholine by 60% at 10 microM. AMGPC had no effect on choline kinase or choline phosphotransferase activities. When AMGPC was added separately to an homogenate, a particulate or a cytosolic fraction, cytidylyltransferase inhibition was observed only in the homogenate. However on particulates recovered from homogenates treated with increasing concentrations of AMGPC, membranous cytidylyltransferase activity decreased dose-dependently. Thus AMGPC had no effect on cytidylyltransferase activity itself but inhibited its translocation from cytosol to membrane. At variance with the well-established positive effect on cytidylyltransferase translocation induced by fatty acids, this is the first demonstration that AMGPC can inhibit cytidylyltransferase translocation in cell-free system.  相似文献   

4.
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This enzyme catalyzes the biosynthesis of CDPcholine from choline phosphate and CTP. We found that its subcellular localization (mainly in microsomal and cytosolic fractions) was different from that of phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17), the enzyme of the alternative pathway for phosphatidylcholine synthesis. CTP:choline-phosphate cytidylyltransferase showed a Km of 10 mM for CTP and 0.3 mM for choline phosphate and exhibited a random mechanism. CDPcholine, the reaction product, was a competitive inhibitor of choline phosphate and CTP utilization and had a Ki of 0.090 mM. Both particulate and soluble enzymes required Mg2+ and exhibited an optimal pH at about 7. Cytosolic activity was enhanced by addition of unsaturated fatty acids or phospholipids extracted from brain membranes. Such an enhancement was increased with the centrifugation time used for preparing the soluble enzyme.  相似文献   

5.
The reaction catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) has been postulated to be a control reaction in the synthesis of phosphatidylcholine (PtdCho) in many animal tissues and some plants. In 3-day-old castor bean (Ricinus communis L. var. Hale) endosperm the majority of cytidylyltransferase activity resided in a 12,000gav 10-min pellet. Following density-gradient fractionation, 60 to 70% of the enzyme activity was associated with the endoplasmic reticulum (ER) fraction, with the remainder in the particulate fraction being in an unidentified membrane band (band A), less than occurred in the soluble fractions. The properties and kinetics of the forward and reverse reactions are described. About 40% of the total ER activity could be solubilized by treatment of the fraction with 0.32 M KCl, which resulted in a threefold increase in the specific activity of the enzyme. The Michaelis constants of the solubilized enzyme were similar to those of the ER activity. The activity of the solubilized enzyme was stimulated 35% by addition of phosphatidylglycerol or phosphatidylinositol to the assay. Addition of a number of other phospholipids to the incubation medium caused only a small change in activity (+/- 10%) but the enzyme could be stimulated up to 60% by the addition of 0.01-1 mM sodium oleate. A combination of 0.25 mM PtdCho with oleate in the assay resulted in additional stimulation at all concentrations of oleate. Oleate had no effect on the ER activity. These results are discussed in relation to the regulation of cytidylyltransferase activity in plants.  相似文献   

6.
Phosphatidylcholine synthesis by rat type II pneumonocytes was altered either by depleting the cells of choline or by exposing the cells to extracellular lung surfactant. Effects of these experimental treatments on the activity of a regulatory enzyme, CTP:phosphocholine cytidylyltransferase, were investigated. Although choline depletion of type II pneumonocytes resulted in inhibition of phosphatidylcholine synthesis, cytidylyltransferase activity (measured in cell homogenates in either the absence or presence of added lipids) was greatly increased. Activation of cytidylyltransferase in choline-depleted cells was rapid and specific, and was quickly and completely reversed when choline-depleted cells were exposed to choline (but not ethanolamine). Choline-dependent changes in enzymic activity were apparently not a result of direct actions of choline on cytidylyltransferase and they were largely unaffected by cyclic AMP analogues, oleic acid, linoleic acid or cycloheximide. The Km value of cytidylyltransferase for CTP (but not phosphocholine) was lower in choline-depleted cells than in choline-repleted cells. Subcellular redistribution of cytidylyltransferase also was associated with activation of the enzyme in choline-depleted cells. When measured in the presence of added lipids, 66.5 +/- 5.0% of recovered cytidylyltransferase activity was particulate in choline-depleted cells but only 34.1 +/- 4.5% was particulate in choline-repleted cells. An increase in particulate cytidylyltransferase also occurred in type II pneumonocytes that were exposed to extracellular surfactant. This latter subcellular redistribution, however, was not accompanied by a change in cytidylyltransferase activity even though incorporation of [3H]choline into phosphatidylcholine was inhibited by approx. 50%. Subcellular redistribution of cytidylyltransferase, therefore, is associated with changes in enzymic activity under some conditions, but can also occur without a resultant alteration in enzymic activity.  相似文献   

7.
Several possible control mechanisms for CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) activity in pea (Pisum sativum L.) stems were investigated. Indol-3-ylacetic acid (IAA) treatment of the pea stems decreased total cytidylyltransferase activity but did not affect its subcellular distribution. Oleate (2 mM) caused some stimulation of enzyme activity by release of activity from the microsomal fraction into the cytosol, but neither phosphatidylglycerol nor monoacyl phosphatidylethanolamine had an effect on activity or subcellular distribution. A decrease in soluble cytidylyltransferase protein concentrations was found in IAA-treated pea stems, but this was not sufficient to account for all of the decrease in cytidylyltransferase activity. A 50% inhibition of enzyme activity could be obtained with 0.2 mM-CMP, which indicated possible allosteric regulation. Similar inhibition was obtained with 1.5 mM-ATP, but other nucleotides had no effect. The cytidylyltransferase enzyme protein was not directly phosphorylated, and the inhibition with 1.5 mM-ATP occurred with the purified enzyme, thus excluding an obligatory mediation via a modulator protein. The results indicate that the cytosolic form of cytidylyltransferase is the most important in pea stem tissue and that the decrease in cytidylyltransferase activity in IAA-treated material appears to be brought about by several methods.  相似文献   

8.
The effect of preincubation of rat liver post-mitochondrial supernatant with NaF and okadaic acid on the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity was investigated. NaF (20 mM) inhibited the time-dependent activation of cytidylyltransferase activity in post-mitochondrial supernatant. Subcellular fractionation of the post-mitochondrial supernatant revealed that cytidylyltransferase activity in the microsomal fraction was decreased and activity in the cytosolic fraction increased with time of preincubation with NaF compared to controls. Okadaic acid is a specific and potent inhibitor of type 1 and 2A phosphoprotein phosphatases. Preincubation of cytosol with 5 microM okadaic acid inhibited the time-dependent activation of cytosolic cytidylyltransferase activity. Preincubation of post-mitochondrial supernatants with 5 microM okadaic acid inhibited the time-dependent activation of cytidylyltransferase activity by 13% at 45 min and 16% at 60 min of preincubation compared to controls. Microsomal cytidylyltransferase activity was decreased 27% at 45 min and 31% at 60 min with a corresponding retention of cytosolic cytidylyltransferase activity of 21% at 45 min and 37% at 60 min of preincubation with okadaic acid compared to controls. We postulate that the activity of the type 1 and/or type 2A phosphoprotein phosphatases affect the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity in rat liver.  相似文献   

9.
Addition of oleate, oleyl alcohol, or palmitate to HeLa cell medium resulted in a rapid stimulation of PC synthesis and activation of CTP: phosphocholine cytidylyltransferase. Stimulation was optimal with 0.35 mM oleate, 0.3 mM oleyl alcohol and 5 mM palmitate, or 1 mM palmitate if EGTA were added to the medium. The cytidylyltransferase was activated by translocation of the inactive cytosolic form to membranes. In untreated cells approx. 30% of the total cytidylyltransferase was membrane bound, while in treated cells, 80-90% was membrane associated. Addition of bovine serum albumin (10 mg/ml) to cells previously treated with oleate (0.35 mM) rapidly removed cellular fatty acid, and the membrane-bound cytidylyltransferase activity returned to approx. 30%. Similar results were obtained by extraction of membranes with albumin in vitro. Although 95% of the free fatty acid was extracted, 30-40% of the membrane cytidylyltransferase remained bound. Translocation of cytidylyltransferase between isolated cytosol and microsomal fractions was promoted by addition of oleate, palmitate, oleyl alcohol, and monoolein. Addition of diacylglycerol, lysophosphatidylcholine, lysophosphatidylethanolamine, calcium palmitate, and detergents such as Triton X-100, cholate or Zwittergent did not stimulate translocation of the enzyme. Addition of oleoyl-CoA promoited translocation, however, 40% of it was hydrolyzed releasing free oleic acid. Cytosolic cytidylyltransferase bound to microsomes pre-treated with phospholipase C, which had 7-fold elevated diacylglycerol content. Fatty acid-promoted translocation was blocked by Triton X-100, but not by 1 M KCl. These results suggest that a variety of compounds with differing head group size and charge, and number of hydrocarbon chains can function as translocators, and that hydrophobic rather than ionic interactions mediate the binding of cytidylyltransferase to membranes.  相似文献   

10.
We have studied in vitro the effects of ethanol on the different enzymes involved in the biosynthesis of phosphatidylcholine (PC) via CDP-choline. Ethanol alters neither choline kinase (CK) nor CTP:phosphocholine cytidylyltransferase (CT) activities but, at levels higher than 50 mM, it does significantly inhibit microsomal cholinephosphotransferase (CPT) activity concomitantly with an increase in the ethanol concentration. A study of the kinetics of the reaction catalysed by CPT shows that ethanol decreases Vmax without altering Km, indicating a non-competitive inhibitory effect. An analysis of the thermodependence of CPT activity in the absence of ethanol reveals a break in the Arrhenius plot and thus a straight relationship between enzyme activity and the physico-chemical state of the microsomal membrane. Incubation of microsomes in the presence of ethanol increased the transition temperature from 25.8–28.2°C. Microsomes were also incubated with n-alkanols with chain-lengths of fewer than five carbon atoms at concentrations which, according to their partition coefficients, produce equimolar levels in the membrane. Under these conditions all the alkanols caused the same inhibitory effect. All these results demonstrate that ethanol modulate the PC biosynthesis at the level of CPT activity and does not affect the CT enzyme. The inhibition found on CPT is clearly dependent on the alteration produced by ethanol on the hepatic microsomal membrane.  相似文献   

11.
The effect of c-Ha-ras transfection on phosphatidylcholine biosynthesis of the keratinocyte cell line HaCaT was investigated. It was shown that ras-transfection caused a 3-fold increase of choline incorporation into phosphatidylcholine. By investigating the mechanisms underlying this phenomenon, two targets were obtained. First, the choline uptake was elevated by 2-fold in ras-transfected HaCaT cells as compared with untransfected HaCaT cells, and second, the activity of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase, was increased by 43%. Stimulation of HaCaT cells and ras-transfected HaCaT cells with oleate revealed that the increased activity of cytidylyltransferase might be due to a higher level of enzyme. In these experiments, a 75% increase of the specific activity of fully stimulated, membrane-bound cytidylyltransferase was found in ras-transfected HaCaT cells. Choline kinase which has been previously descrived as a target of ras-transfection in fibroblasts was unaffected.  相似文献   

12.
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins.  相似文献   

13.
The specificity of the phospholipid head-group for feedback regulation of CTP: phosphocholine cytidylyltransferase was examined in rat hepatocytes. In choline-deficient cells there is a 2-fold increase in binding of cytidylyltransferase to cellular membranes, compared with choline-supplemented cells. Supplementation of choline-deficient cells with choline, dimethylethanolamine, monomethylethanolamine or ethanolamine resulted in an increase in the concentration of the corresponding phospholipid. Release of cytidylyltransferase into cytosol was only observed in hepatocytes supplemented with choline or dimethylethanolamine. The apparent EC50 values (concn. giving half of maximal effect) for cytidylyltransferase translocation were similar for choline and dimethylethanolamine (25 and 27 microM respectively). The maximum amount of cytidylyltransferase released into cytosol with choline supplementation (1.13 m-units/mg membrane protein) was twice that (0.62) observed with dimethylethanolamine. Supplementation of choline-deficient hepatocytes with NN'-diethylethanolamine, N-ethylethanolamine or 3-aminopropanol also did not cause release of cytidylyltransferase from cellular membranes. The translocation of cytidylyltransferase appeared to be mediated by the concentration of phosphatidylcholine in the membranes and not the ratio of phosphatidylcholine to phosphatidylethanolamine. The results provide further evidence for feedback regulation of phosphatidylcholine biosynthesis by phosphatidylcholine.  相似文献   

14.
Choline accumulation and phosphatidylcholine biosynthesis were investigated in the choline-requiring anaerobic protozoon Entodinium caudatum by incubating whole cells or subcellular fractions with [14C] choline, phosphoryl [14C] choline and CDP-[14C] choline. 2. All membrane fractions contained choline kinase (EC 2.7.1.32) and CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2), although the specific activities were less in the cell-envelope fraction. Choline phosphate cytidylyltransferase (EC 2.7.7.15) was limited to the supernatant, and this enzyme was rate-limiting for phosphatidylcholine synthesis in the whole cell. 3. Synthesis of phosphatidylcholine from free choline by membranes was only possible in the presence of supernatant. Such reconstituted systems required ATP (2.5 mM), CTP (1 mM) and Mg2+ (5 mM) for maximum synthesis of the phospholipid. CTP and Mg2+ were absolute requirements. 4. Hemicholinium-3 prevented choline uptake by the cells and was strongly inhibitory towards choline kinase; the other enzymes involved in phosphatidylcholine synthesis were minimally affected. 5. Ca2+ ions (0.5 mM) substantially inhibited CDP-choline-1,2-diacylglycerol cholinephosphotransferase in the presence of 15 mM-Mg2+, but choline phosphate cytidylyltransferase and choline kinase were less affected. 6. No free choline could be detected intact cells even after short (10-180s) incubations or at temperatures down to 10 degrees C. The [14C] choline entering was mainly present as phosphorylcholine and to a lesser extent as phosphatidylcholine. 7. It is suggested that choline kinase effectively traps any choline within the cell, thus ensuring a supply of the base for future growth. At low choline concentrations the activity of choline kinase is rate-limiting for choline uptake, and the enzyme might possibly play an active role in the transport phenomenon. Thus the choline uptake by intact cells and choline kinase have similar Km values and show similar responses to temperature and hemicholinium-3.  相似文献   

15.
The intracellular distribution and catalytic properties of CTP: ethanolaminephosphate cytidylyltransferase from endosperm of castor bean (Ricinus communis L. var. Hale) have been studied. This enzyme was confined to membranes, with about 80% of the activity occurring in mitochondria and the rest in endoplasmic reticulum (ER) following sucrose density gradient centrifugation. The mitochondrial location of this enzyme was supported by further purifying mitochondria on Percoll density gradients. The mitochondrial cytidylyltransferase was detected largely in outer membrane fractions, and lost its activity after trypsin treatment, indicating that the active sites are exposed to the cytoplasm. Both mitochondrial and ER cytidylyltransferase required cations for activity; Mg2+ was preferred over Mn2+ and Ca2+. The pH optima both were 6.5. The apparent Km values for ethanolamine phosphate were 143 and 83 microM and those for CTP were 125 and 1010 microM, respectively, for the mitochondrial and ER activities. The mitochondrial cytidylyltransferase reached a maximal velocity of 3.0 nmol/min/mg protein, whereas ER cytidylyltransferase was 0.424 nmol/min/mg protein. These findings reveal that the majority of the cytidylyltransferase activity in castor bean endosperm is not closely associated with ethanolaminephosphotransferase (predominantly in ER) which catalyzes the subsequent reaction in the synthesis of phosphatidyl-ethanolamine by a nucleotide pathway. The possible roles of these enzymes in phosphatidylethanolamine synthesis in plants are discussed.  相似文献   

16.
GTP has been found to markedly enhance the formation of CDP-diacylglycerol in rat liver microsomes. Neither GDP, GMP nor the nonhydrolyzable analogues of GTP increased the synthesis of the liponucleotide. The GTP stimulation of phosphatidate cytidylyltransferase activity is inhibited by EDTA and NaF. GTP enhances the activity of the enzyme in a concentration-, time-, and temperature-dependent manner and preincubation of rat liver microsomes with GTP produces a persistently activated phosphatidate cytidylyltransferase. GTP reduces the Km for phosphatidic acid, but has no effect on either the Km for CTP or the Vmax of the reaction. GTP, by stimulating the activity of the phosphatidate cytidylyltransferase, enhances the formation of phosphatidylinositol from CTP, phosphatidic acid, and inositol. Evidence is presented suggesting that the mechanism by which GTP stimulates the activity of the phosphatidate cytidylyltransferase involves a covalent modification of the enzyme itself or a protein intimately associated with the phosphatidate cytidylyltransferase.  相似文献   

17.
The effect of preincubation of rat liver post-mitochondrial supernatant with NaF and okadaic acid on the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity was investigated. NaF (20 mM) inhibited the time-dependent activation of cytidylyltransferase activity in post-mitochondrial supernatant. Subcellular fractionation of the post-mitochondrial supernatant revealed that cytidylyltransferase activity in the microsomal fraction was decreased and activity in the cytosolic fraction increased with time of preincubation with NaF compared to controls. Okadaic acid is a specific and potent inhibitor of type 1 and 2A phosphoprotein phosphatases. Preincubation of cytosol with 5 μM okadaic acid inhibited the time-dependent activation of cytosolic cytidylyltransferase activity. Preincubation of post-mitochondrial supernatants with 5 μM okadaic acid inhibited the time-dependent activation of cytidylyltransferase activity by 13% at 45 min and 16% at 60 min of preincubation compared to controls. Microsomal cytidylyltransferase activity was decreased 27% at 45 min and 31% at 60 min with a corresponding retention of cytosolic cytidylyltransferase activity of 21% at 45 min and 37% at 60 min of preincubation with okadaic acid compared to controls. We postulate that the activity of the type 1 and/or type 2A phosphoprotein phosphatases affect the subcellular distribution of CTP: phosphocholine cytidylyltransferase activity in rat liver.  相似文献   

18.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

19.
CTP: cholinephosphate cytidylyltransferase (EC 2.7.7.15) has been purified approximately 600-fold from postgermination endosperm of castor bean. The enzyme was solubilized with n-octyl beta-D-glucopyranoside and then subjected to ion exchange and gel filtration chromatography. The Km's of the purified enzymatic activity were 0.37 and 1.1 mM for CTP and choline phosphate, respectively. Magnesium was required for activity. The purified cytidylyltransferase activity was inhibited by both phosphate and ATP. The extent of ATP inhibition was dependent on preincubation time, temperature, and Mg2+ and Ca2+ concentrations. The possible regulation of cytidylyltransferase in castor bean endosperm by protein phosphorylation is discussed.  相似文献   

20.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号