首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone.  相似文献   

3.
4.
Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression. Most of the regulatory Escherichia coli sRNAs known to date modulate translation of trans-encoded target mRNAs. We studied the specificity of sRNA target interactions using gene fusions to green fluorescent protein (GFP) as a novel reporter of translational control by bacterial sRNAs in vivo. Target sequences were selected from both monocistronic and polycistronic mRNAs. Upon expression of the cognate sRNA (DsrA, GcvB, MicA, MicC, MicF, RprA, RyhB, SgrS and Spot42), we observed highly specific translation repression/activation of target fusions under various growth conditions. Target regulation was also tested in mutants that lacked Hfq or RNase III, or which expressed a truncated RNase E (rne701). We found that translational regulation by these sRNAs was largely independent of full-length RNase E, e.g. despite the fact that ompA fusion mRNA decay could no longer be promoted by MicA. This is the first study in which multiple well-defined E.coli sRNA target pairs have been studied in a uniform manner in vivo. We expect our GFP fusion approach to be applicable to sRNA targets of other bacteria, and also demonstrate that Vibrio RyhB sRNA represses a Vibrio sodB fusion when co-expressed in E.coli.  相似文献   

5.
6.
7.
In recent years, various families of small non-coding RNAs (sRNAs) have been discovered by experimental and computational approaches, both in bacterial and eukaryotic genomes. Although most of them await elucidation of their function, it has been reported that some play important roles in gene regulation. Here we carried out comparative genomics analysis of possible sRNAs that are computationally identified in 30 bacterial genomes from gamma- and alpha-proteobacteria and Deinococcus radiodurans. Identified sRNAs are clustered by a complete-linkage clustering method to see conservation among the organisms. On average, sRNAs are found in approximately 30% of intergenic regions of each genome sequence. Of these, 25.7% are conserved among three or more organisms. Approximately 60% of the conserved sRNAs do not locate in orthologous intergenic regions, implying that sRNAs may be shuffled their positions in genomes. The current study implies that sRNAs may be involved in a more extensive range of functions in bacteria.  相似文献   

8.
Bacteria contain a diverse set of RNAs to provide tight regulation of gene expression in response to environmental stimuli. Bacterial small RNAs (sRNAs) work in conjunction with protein cofactors to bind complementary mRNA sequences in the cell, leading to up‐ or downregulation of protein synthesis. In vivo imaging of sRNAs can aid in understanding their spatiotemporal dynamics in real time, which inspires new ways to manipulate these systems for a variety of applications including synthetic biology and therapeutics. Current methods for sRNA imaging are quite limited in vivo and do not provide real‐time information about fluctuations in sRNA levels. Herein, we describe our efforts toward the development of an RNA‐based fluorescent biosensor for bacterial sRNA both in vitro and in vivo. We validated these sensors for three different bacterial sRNAs in Escherichia coli and demonstrated that the designs provide a bright, sequence‐specific signal output in response to exogenous and endogenous RNA targets.  相似文献   

9.
10.
11.
12.
细菌中的非编码小RNA(small RNA, sRNA)作为一种靶向调控分子在细胞生理代谢过程中具有重要作用。sRNA作用于特定靶标,调控基因的表达。大肠杆菌大约有100种sRNA,其中1/3 sRNA需要伴侣蛋白Hfq的介导。病原细菌中sRNA分子如何调控致病基因的表达,目前研究仍处于初级阶段。本文将从生物膜形成、细菌耐药性以及对宿主的影响等方面,结合新颖的sRNA的研究方法,综述sRNA在调控代谢网络及控制病原菌致病性方面的作用。  相似文献   

13.
14.
Bacterial small RNAs (sRNAs) are an emerging class of regulatory RNAs of about 40-500 nucleotides in length and, by binding to their target mRNAs or proteins, get involved in many biological processes such as sensing environmental changes and regulating gene expression. Thus, identification of bacterial sRNAs and their targets has become an important part of sRNA biology. Current strategies for discovery of sRNAs and their targets usually involve bioinformatics prediction followed by experimental validation, emphasizing a key role for bioinformatics prediction. Here, therefore, we provided an overview on prediction methods, focusing on the merits and limitations of each class of models. Finally, we will present our thinking on developing related bioinformatics models in future.  相似文献   

15.
16.
17.
Ying X  Cao Y  Wu J  Liu Q  Cha L  Li W 《PloS one》2011,6(7):e22705

Background

Bacterial sRNAs are a class of small regulatory RNAs involved in regulation of expression of a variety of genes. Most sRNAs act in trans via base-pairing with target mRNAs, leading to repression or activation of translation or mRNA degradation. To date, more than 1,000 sRNAs have been identified. However, direct targets have been identified for only approximately 50 of these sRNAs. Computational predictions can provide candidates for target validation, thereby increasing the speed of sRNA target identification. Although several methods have been developed, target prediction for bacterial sRNAs remains challenging.

Results

Here, we propose a novel method for sRNA target prediction, termed sTarPicker, which was based on a two-step model for hybridization between an sRNA and an mRNA target. This method first selects stable duplexes after screening all possible duplexes between the sRNA and the potential mRNA target. Next, hybridization between the sRNA and the target is extended to span the entire binding site. Finally, quantitative predictions are produced with an ensemble classifier generated using machine-learning methods. In calculations to determine the hybridization energies of seed regions and binding regions, both thermodynamic stability and site accessibility of the sRNAs and targets were considered. Comparisons with the existing methods showed that sTarPicker performed best in both performance of target prediction and accuracy of the predicted binding sites.

Conclusions

sTarPicker can predict bacterial sRNA targets with higher efficiency and determine the exact locations of the interactions with a higher accuracy than competing programs. sTarPicker is available at http://ccb.bmi.ac.cn/starpicker/.  相似文献   

18.
Recent work has uncovered a growing number of bacterial small RNAs (sRNAs), some of which have been shown to regulate critical cellular processes. Computational approaches, in combination with experiments, have played an important role in the discovery of these sRNAs. In this article, we first give an overview of different computational approaches for genome-wide prediction of sRNAs. These approaches have led to the discovery of several novel sRNAs, however the regulatory roles are not yet known for a majority of these sRNAs. By contrast, several recent studies have highlighted the inverse problem where the functional role of the sRNA is already known and the challenge is to identify its genomic location. The focus of this article is on computational tools and strategies for identifying these specific sRNAs which function as key components of known regulatory pathways.  相似文献   

19.
20.
Small RNA (sRNA) molecules are non-coding RNAs that have been implicated in regulation of various cellular processes in living systems, allowing them to adapt to changing environmental conditions. Till date, sRNAs have not been reported in Acinetobacter baumannii (A. baumannii), which has emerged as a significant multiple drug resistant nosocomial pathogen. In the present study, a combination of bioinformatic and experimental approach was used for identification of novel sRNAs. A total of 31 putative sRNAs were predicted by a combination of two algorithms, sRNAPredict and QRNA. Initially 10 sRNAs were chosen on the basis of lower E- value and three sRNAs (designated as AbsR11, 25 and 28) showed positive signal on Northern blot. These sRNAs are novel in nature as they do not have homologous sequences in other bacterial species. Expression of the three sRNAs was examined in various phases of bacterial growth. Further, the effect of various stress conditions on sRNA gene expression was determined. A detailed investigation revealed differential expression profile of AbsR25 in presence of varying amounts of ethidium bromide (EtBr), suggesting that its expression is influenced by environmental or internal signals such as stress response. A decrease in expression of AbsR25 and concomitant increase in the expression of bioinformatically predicted targets in presence of high EtBr was reverberated by the decrease in target gene expression when AbsR25 was overexpressed. This hints at the negative regulation of target genes by AbsR25. Interestingly, the putative targets include transporter genes and the degree of variation in expression of one of them (A1S_1331) suggests that AbsR25 is involved in regulation of a transporter. This study provides a perspective for future studies of sRNAs and their possible involvement in regulation of antibiotic resistance in bacteria specifically in cryptic A. baumannii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号