共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Canonne-Hergaux F Donovan A Delaby C Wang HJ Gros P 《American journal of physiology. Gastrointestinal and liver physiology》2006,290(1):G156-G163
Intestinal epithelial cells and reticuloendothelial macrophages are, respectively, involved in diet iron absorption and heme iron recycling from senescent erythrocytes, two critical processes of iron homeostasis. These cells appear to use the same transporter, ferroportin (Slc40a1), to export iron. The aim of this study was to compare the localization, expression, and regulation of ferroportin in both duodenal and macrophage cells. Using a high-affinity purified polyclonal antibody, we analyzed the localization and expression of ferroportin protein in the spleen, liver, and duodenum isolated from normal mice as well as from well-characterized mouse models of altered iron homeostasis. Ferroportin was found to be predominantly expressed in enterocytes of the duodenum, in splenic macrophages, and in liver Kupffer cells. Interestingly, the protein species detected in these cells migrated differently on SDS-PAGE. These differences in apparent molecular masses were partly explained by posttranslational complex N-linked glycosylations. In addition, in enterocytes, the transporter was mostly expressed at the basolateral membrane, whereas in bone marrow-derived macrophages, ferroportin was found predominantly localized in the intracellular vesicular compartment. However, some microdomains positive for ferroportin were also detected at the plasma membrane of macrophages. Despite these differences, we observed a parallel upregulation of ferroportin expression in tissue macrophages and enterocytes in response to iron-restricted erythropoiesis, suggesting that iron homeostasis is likely maintained through coordinate expression of the iron exporter in both intestinal and phagocytic cells. Our data also confirm a predominant regulation of ferroportin through systemic regulator(s) likely including hepcidin. 相似文献
3.
Akiba Y Furukawa O Guth PH Engel E Nastaskin I Kaunitz JD 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(6):G1083-G1092
We studied the role of duodenal cellular ion transport in epithelial defense mechanisms in response to rapid shifts of luminal pH. We used in vivo microscopy to measure duodenal epithelial cell intracellular pH (pH(i)), mucus gel thickness, blood flow, and HCO secretion in anesthetized rats with or without the Na(+)/H(+) exchange inhibitor 5-(N,N-dimethyl)-amiloride (DMA) or the anion transport inhibitor DIDS. During acid perfusion pH(i) decreased, whereas mucus gel thickness and blood flow increased, with pH(i) increasing to over baseline (overshoot) and blood flow and gel thickness returning to basal levels during subsequent neutral solution perfusion. During a second brief acid challenge, pH(i) decrease was lessened (adaptation). These are best explained by augmented cellular HCO uptake in response to perfused acid. DIDS, but not DMA, abolished the overshoot and pH(i) adaptation and decreased acid-enhanced HCO secretion. In perfused duodenum, effluent total CO(2) output was not increased by acid perfusion, despite a massive increase of titratable alkalinity, consistent with substantial acid back diffusion and modest CO(2) back diffusion during acid perfusions. Rapid shifts of luminal pH increased duodenal epithelial buffering power, which protected the cells from perfused acid, presumably by activation of Na(+)-HCO cotransport. This adaptation may be a novel, important, and early duodenal protective mechanism against rapid physiological shifts of luminal acidity. 相似文献
4.
Subcellular fractionation studies were performed to delineate plasma membrane and intracellular membrane populations which might be involved in intracellular Ca2+-homeostasis of rat small intestinal epithelial cells. After a low-speed supernatant fraction had been suspended in 5% sorbitol and subjected to equilibrium centrifugation in a zonal rotor, the Golgi and endoplasmic reticulum markers, galactosyltransferase and NADPH-cytochrome -c reductase, were concentrated in a density region designated Window II. The basal-lateral membrane marker (Na+-K+)-ATPase was concentrated in a higher-density region designated Window III. ATP-dependent Ca2+ transport was equally distributed between the two windows. Several membrane populations could be resolved from each window with good recovery of Ca2+-transport activity by a second density gradient centrifugation step. Second density gradient fractions were subjected to counter-current partitioning in an aqueous polymer two-phase system. Basal-lateral membranes, characterized by an 11-fold enrichment of (Na+-K+)-ATPase, contained ATP-dependent Ca2+-transport activity with Vmax = 3.7 nmol/mg per min and Km = 0.5 microM. A major Golgi-derived population exhibited Ca2+-transport activity with Vmax and Km values similar to those of the basal-lateral membranes. One membrane population, presumed to have been derived from the endoplasmic reticulum, contained Ca2+-transport activity with Vmax = 4 nmol/mg per min and Km = 0.5 microM. In addition to demonstrating that ATP-dependent Ca2+-transport activity has a complex distribution within enterocytes, this study raises the possibility that the basolateral plasma membranes might account for a relatively minor portion of the cell's Ca2+-pumping ability. 相似文献
5.
Atif B Awad Maria Sri Hartati Carol S Fink 《The Journal of nutritional biochemistry》1998,9(12):712-717
The objective of the present study was to examine the metabolism of testosterone in rat tissues as influenced by dietary phytosterols. Testosterone metabolism includes reductions to more active metabolites or aromatization to estrogen. Both higher levels of androgens and estrogens are implicated as risk factors in the development of prostate cancer. Tissues studied included liver, testis, and prostate. Feeding 2% phytosterols with 0.2% cholic acid to rats for 22 days resulted in a 33% reduction in serum testosterone compared with controls, which received only 0.2% cholic acid in the diet. 5-α-Reductase was reduced by 41 to 44% and 33% in the liver and prostate, respectively. No effect of phytosterols was observed in the testis. Only aromatase activity of the prostate was reduced by 55% upon feeding phytosterols. It was concluded that dietary phytosterols may reduce the risk of prostate cancer by lowering the activities of the enzymes of testosterone metabolism. 相似文献
6.
Yeh KY Yeh M Glass J 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(3):G385-G394
Hepcidin has been implicated as the iron stores regulator: a hepatic signaling molecule that regulates intestinal iron absorption by undefined mechanisms. The possibility that hepcidin regulates the expression of ferroportin 1 (FPT1), the basolateral iron transporter, was examined in rats after administration of LPS, an iron chelator, or His-tagged recombinant hepcidin (His-rHepc). In the liver, LPS stimulated a biphasic increase of hepcidin mRNA with peaks of mRNA at 6 and 36 h. Concurrently, hepatic FPT1 mRNA expression decreased to minimal level at 6 h and then increased with a peak at 24-36 h. LPS also induced biphasic changes in intestinal FPT1 mRNA expression, with decreased levels at 6 h and increased expression at 48 h. Whereas the initial decrease of FPT1 coincides with an LPS-induced decrease in serum iron, both intestinal and hepatic FPT1 expression recovered, whereas serum iron concentration continued to decrease for at least 24 h. Dietary iron ingestion increased intestinal ferritin protein production but did not reduce intestinal FPT1 mRNA expression. The iron chelator pyrrolidinedithiocarbamate (PDTC) stimulated hepatic hepcidin without suppressing intestinal FPT1 expression. In PDTC-treated rats, LPS stimulated no additional hepatic hepcidin expression but did increase intestinal FPT1 expression. Administration of HisrHepc induced significant reduction of intestinal FPT1 expression. Taken together, these data suggest that hepcidin mediates LPS-induced downregulation of intestinal FPT1 expression and that the hepcidin signaling pathway involves a PDTC-sensitive step. 相似文献
7.
Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deficient diet (0.25 mg Cu/kg; CuD) for 28 days. The rats were fed 1.0 g each of their respective diets labeled with 59Fe (37 kBq/g), and the amount of label retained was measured one week later by whole-body-counting (WBC). Group 3 was fed a CuA diet and Groups 4 and 5 were fed a CuD diet for 28 days. Group 5 was then fed the CuA diet for another week while Groups 3 and 4 continued on their previous regimens. Rats in Groups 3, 4, and 5 were fed 1.0 g of diet labeled with 59Fe, and the amount of label retained was measured by WBC one week later. Rats were killed and duodenal enterocytes isolated for Hp protein analysis, whole blood was analyzed for hematological parameters, and various organs for 59Fe content. CuD rats absorbed less (P<0.05) Fe than CuA rats, the relative amount of duodenal Hp was less (P<0.05) in CuD rats, and the CuD rats developed anemia. After the CuD rats had been repleted with Cu for one week, Fe retention rose to values even higher (P<0.05) than those in CuA rats. After two weeks, the relative amount of duodenal Hp was higher (P<0.05) than normal, and most signs of anemia were reversed. Liver 59Fe was elevated in CuD rats, but was restored to normal upon Cu repletion. These findings suggest a strong association between duodenal Hp abundance and Fe absorption in the CuD rat, and that reduced Fe absorption is an important factor in the cause of anemia. 相似文献
8.
9.
The response of duodenal cytosolic aconitase (c-aconitase) to oral repletion of graded doses of iron (Fe) during Fe-deficiency was studied in rats (WNIN strain). In addition, in vitro effect of zinc (Zn) on the enzyme activity was studied using duodenal cytosol. Iron-depleted male rats were orally repleted with either 100 or 190 or 370 microg of Fe/day (n=6, each) for 2 weeks. Fe repletion was found to increase linearly the activity of duodenal c-aconitase along with the indicators of iron status. The correlation coefficient (r) between c-aconitase and haemoglobin and mucosal ferritin was 0.6453 and 0.8441, respectively. The effects of zinc (0-40 microM) in vitro on the kinetics of c-aconitase from iron-replete stock diet fed rats (n=4) showed that Zn competitively inhibited the enzyme with a Ki (app.) of 28 microM. These observations suggest that c-aconitase is a critical target involved in the assimilation of Fe and excess dietary Zn can result in negative interactions. 相似文献
10.
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein. 相似文献
11.
Dr. Hideki Saito Takeshi Kasajima Akihiro Masuda Yutaka Imai Makoto Ishikawa 《Cell and tissue research》1988,251(2):307-313
Summary The distribution of lysozyme in normal gastric and duodenal mucosa was studied by light- and electronmicroscopic immunocytochemical techniques (direct enzyme-labeled antibody method).In the duodenal mucosa, lysozyme was found in the Paneth cells and the epithelial cells of Brunner's glands. Electron-microscopically, lysozyme was found in rough endoplasmic reticulum and perinuclear spaces, which were assumed to be protein-synthesizing organelles, and also in the secretory granules of Paneth cells. Additionally, lysozyme was detected in the stomach in mucinous granules and in some parts of the rough endoplasmic reticulum within the epithelial cells of the pyloric glands, the mucous neck cells of the fundic glands, and in several surface epithelial cells of the plyoric and fundic regions.This suggests that some quantity of lysozyme in gastrointestinal secretion originates from the gastric and duodenal glands, and that it acts as a defense mechanism in the gastrointestinal tract. 相似文献
12.
Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells 总被引:1,自引:0,他引:1
Lee SM Attieh ZK Son HS Chen H Bacouri-Haidar M Vulpe CD 《Biochemical and biophysical research communications》2012,421(3):449-455
While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO(4)) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a cellular compartment in close proximity but not overlapping with the basolateral surface. Surface biotinylation studies indicate that hephaestin in the peri-basolateral location is accessible to the extra-cellular environment. These results support the hypothesis that hephaestin is involved in iron mobilization of iron from the intestine to circulation. 相似文献
13.
膜铁转运蛋白Ferroportin 1的研究进展 总被引:3,自引:0,他引:3
膜铁转运蛋白Ferroportin 1(2000年发现)在细胞铁的输出中起重要作用。它在成熟的十二指肠绒毛上皮细胞基底面、脾和肝的巨噬细胞、胎盘的合体滋养层细胞等都有表达。经序列分析显示Ferroportin 1具有十个跨膜结构域、一个还原酶位点和一个基底定位信号位点。此外,Ferroportin 1 mRNA转录在5’非翻译区包含一个铁反应元件。本文对Ferroportin 1的目前研究进行了综述,并阐述了其医学应用前景。 相似文献
14.
MCP-1 induces migration of adult neural stem cells 总被引:13,自引:0,他引:13
Widera D Holtkamp W Entschladen F Niggemann B Zänker K Kaltschmidt B Kaltschmidt C 《European journal of cell biology》2004,83(8):381-387
15.
16.
Discovered over a decade ago, hephaestin (Heph) has been implicated as a ferroxidase (FOX) vital for intestinal iron absorption. Stringent structural or kinetic data derived from purified, native protein is however lacking, leading to the hypothesis that an alternate, undiscovered form of Heph could exist in mammalian enterocytes. This possibility was tested using laboratory rodent and cell culture models. Cytosolic and membrane fractions were obtained from rat enterocytes and purity of the fractions was assessed. Western blot analyses revealed Heph in cytosol obtained by three different methods, ruling out the possibility of a method-induced artifact being the major contributor to this observation. Absence of two different membrane-proteins, ferroportin 1 and Menke's copper ATPase in cytosol, and the absence of lipids in representative cytosolic samples tested by thin layer chromatography, eliminated significant membrane contamination of cytosol. Further, immunohisto- and immunocyto-chemical analyses identified Heph in rat enterocytes and in two intestinal epithelial cell lines, IEC-6 and Caco-2, intracellularly. Additionally, cytosolic Heph increased upon iron-deprivation but more important, decreased significantly upon copper-deprivation, mimicking the response of membrane-bound Heph. Moreover, FOX activity was present in rat cytosol, and was partly inhibited by anti-Heph antibody. Finally, lack of immunodetectable ceruloplasmin (Cp) by western blot precluded Cp as an underlying cause of this activity. These data demonstrate that rat enterocytes contain a soluble/cytosolic form of Heph possibly contributing to the observed FOX activity. 相似文献
17.
Peripheral administration of butorphanol tartrate markedly enhanced feeding from 0800 to 1400 hours when compared with vehicle controls. Butorphanol tartrate feeding was not antagonized by doses of naloxone as high as 10 mg/kg. These data support the concept that the kappa or sigma opiate receptors are involved in feeding behavior.It is well recognized that the endogenous opiates play a role in the central regulation of appetite (1, 2, 3, 4). Numerous studies have shown that The endogenous opioid peptides and morphine can initiate feeding under various conditions (5–12) whereas the opiate antagonist, naloxine can reduce food consumption (13–20). Recently, the endogenous opiod peptide, dynorphin, has been reported to enhance food intake (12–25).Much evidence has been accumulated indicating that a number of opiate receptors are present in the brain, each one having a high affinity for a specific endogenous opioid peptide (26, 27). Both the cyclazocine related compounds (28) and the feeding enhancer, dynorphin (29–32), have been reported to be specific kappa receptor agonists. In the present study, we report on the effect of the morphinan congener, butorphanol tartrate (33), on ingestive behaviour. 相似文献
18.
19.
Kageyama H Suzuki E Kashiwa T Kanazawa M Osaka T Kimura S Namba Y Inoue S 《Biochemical and biophysical research communications》2000,274(2):355-358
Stress-induced hyperphagia is enhanced in the presence of sweets, particularly sucrose, which may act to attenuate stress. Recently, it was also reported that heat shock protein (HSP) may be involved in the defense against stress. To explore whether sucrose alters gene expression of HSP under stress, we determined the HSP mRNA levels in the hypothalamus, cerebellum, and cerebral cortex after restraint stress in sucrose-diet-fed rats. Competitive RT-PCR revealed that gene expressions of HSP27 in the cerebral cortex and cerebellum and of HSP70 in the cerebral cortex, hypothalamus, and cerebellum were induced by restraint stress under a sucrose-diet-fed condition. However, restraint stress by itself or sucrose diet alone did not induce expression of HSP27 or HSP70 mRNA in any of the three anatomical parts. It is suggested that sucrose facilitates the gene expression of HSP27 and HSP70 in brain after restraint stress, which may attenuate stress. 相似文献
20.
Gremlin-1, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2) expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation. 相似文献