首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The dynamics of plant invasions from initial colonization through patch expansion are driven in part by mode of reproduction, i.e., sexual (seed) and asexual (clonal fragments and expansion) means. Expansion of existing patches—both rate and mode of spread into a matrix of varying conditions—is important for predicting potential invader impacts. In this study, we used fine-scale genetic assessments and remote sensing to describe both the rate and mode of expansion for 20 Phragmites australis patches in flooded and unflooded wetland units on the Great Salt Lake, UT. We found that the majority of Phragmites patch expansion occurred via clonal spread but we also documented instances of (potentially episodic) seedling recruitment. The mode of patch expansion, inferred from patch edge genet richness, was unrelated to flooding in the wetland unit in the preceding growing season. The rate of Phragmites patch expansion varied from 0.09 to 0.35 year?1 and was unrelated to the mode of spread. In six patches monitored across two years, monoclonal patches stayed monoclonal, whereas patches with higher genet richness had a marked increase in diversity in the second year. The findings of the present study suggest how this partially clonal species can exploit the benefits of both sexual (i.e., genetic recombination, widespread dispersal, colonization of new areas) and asexual reproduction (i.e., stability of established clones suited to local environmental conditions) to become one of the most successful wetland plant invaders. To control this species, both forms of reproduction need to be fully addressed through targeted management actions.  相似文献   

2.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

3.
Clonal structure in clonal plants can affect sexual reproduction. Individual ramets can decrease reproduction if their neighbors are ramets of the same genet due to inbreeding depression or self-incompatibility. We assessed ramet reproductive success in the partial self-incompatible Ferocactus robustus (Cactaceae) as a function of floral display size in focal ramets and floral display size and clonal structure of their reproductive neighborhoods. Ramets were labeled, sized in number of stems, mapped and genetically identified through RAPD markers in one population. A pollen dispersal area of 15-m radius was established for each ramet to determine the clonal diversity in the neighborhoods. Flower production and fruit set were counted on a monthly basis during one reproductive season as a surrogate of ramet fitness. We expected a decrease in individual ramet reproductive success as a function of the number of reproductive ramets of the same genet in the neighborhood. A total of 272 sampled ramets revealed 116 multilocus genotypes, showing high clonal diversity in the population (G/N = 0.43, D = 0.98). Clonal diversity of neighborhoods ranged from 0.06 to 1 and fruit set varied from 0 to 76.9%. Individual ramet reproductive success was influenced by (1) mate availability, (2) floral display size of a genet within the reproductive neighborhood, and (3) the proportion of distinguishable genotypes. Floral display size of genets and ramets coupled with the genetic diversity within the reproductive neighborhood determines the low sexual reproduction in F. robustus.  相似文献   

4.
《Aquatic Botany》2007,86(1):1-8
Differences in the reproductive mode (sexual and vegetative reproduction) between populations of a species may produce diverse patterns of genetic structure within and among populations. We analyzed the clonal diversity of populations of a heterostylous plant (Nymphoides indica (L.) Kuntze) having different floral morph ratios in the Higashi-harima area of Japan. The number of MLGs (multilocus genotypes) in populations with equal floral morph ratios was significantly higher than that among populations with biased floral morph ratios and among monomorphic populations. Populations with equal floral morph ratios followed the Hardy–Weinberg equilibrium. A dispersal distance of 0–4.2 km was significantly correlated with Nei's genetic distance, supporting a stepping-stone model of dispersal. Four rare MLGs were included in populations with equal floral morph ratios, distributed among neighboring populations. We concluded that clonal diversity of N. indica in the Higashi-harima area is maintained by the success of seed production and establishment of seedlings, and by the proximate occurrence of habitats around the populations where successful sexual reproduction occurs.  相似文献   

5.
Phragmites australis is a perennial grass that has invaded wetlands of the northeastern United States over the past century. The Hudson River Estuary and surrounding watersheds are no exception in that populations of P. australis have spread dramatically along its shores and tributaries in the past 40 years. Recent studies have shown that genetically variable populations of P. australis can spread by seed dispersal in addition to clonal mechanisms. It is important to characterize the genetic variation of Hudson River populations as part of a management strategy for this species to determine the mechanisms by which its spreads and colonizes new habitats, particularly those with frequent anthropogenic disturbances. The goals of this study were to quantify levels of genetic variation and structuring in Hudson River populations of P. australis using microsatellite DNA analysis. A total of 354 culms of P. australis were collected from nine locations ranging from Albany, New York to Staten Island, New York in the summers of 2004 (N = 174) and 2011 (N = 180). Microsatellite data from eight loci indicated that the Hudson River Estuary has some of the highest levels of genetic variation of all U. S. Atlantic Coast regions containing P. australis. Gene diversity (Hs) across all loci in the 2004 collection was 0.45 (±0.02) and that of the 2011 collection was 0.47 (±0.07). Patches within sample sites were rarely monoclonal and had multiple genetic phenotypes. Moran’s Identity tests indicated that individuals within a patch were closely related, whereas little genetic relatedness was evident among individuals from sample sites >1 km apart. Spatial structuring was also not evident in autospatial correlation and principle coordinate analyses. These findings suggest that genetic diversity is maintained within stands by sexual reproduction and that seeds are important in dispersal of P. australis across the Hudson River Estuary. Ample habitats are available for establishment of new Phragmites stands due to high levels of anthropogenic disturbance from populations living along the Estuary. Wildlife managers should focus on monitoring habitats that provide seedbed for Phragmites and promote land use practices that prevent soil disturbance and establishment of new stands.  相似文献   

6.
Ceratophyllum spp., Callitriche spp., Zannichellia spp. and Potamogeton pectinatus L. are widespread submerged macrophyte species, often occurring at high abundance and forming an integral part of the vegetation of many types of shallow aquatic systems. Several species occur in both freshwater and brackish water habitats. Most have a mixed reproduction system and can reproduce sexually by seeds and propagate asexually by rhizomes, turions, root tubers or axillary tubers. It is hypothesized that sexual propagules are more important than vegetative fragments to ensure long-distance-dispersal, which in case of frequent bird or water flow-mediated dispersal should lead to lowered genetic differentiation. At a regional level, we used dominant ISSR markers in a multi-species approach and observed the largest clonal differentiation between brackish water and freshwater populations of the western European lowland (Belgium). Differentiation was pronounced at taxon level (e.g. Zannichellia), as a salinity gradient (P. pectinatus) or as a coastal-to-inland conductivity gradient (Callitriche obtusangula). These differences and trends suggested a very limited dispersal at regional level across both habitats and regions. To test the hypothesis whether vegetative reproduction and dispersal may have an important function in maintenance of the species at local scale, we investigated the microsatellite diversity and clonal distribution within and between populations of P. pectinatus from a single catchment, representing upstream forest ponds and downstream river sites along the Woluwe (Brussels, Belgium). Clonal diversity was low on average, however, with a higher number of multilocus genotypes in upstream forest ponds than in downstream river sites. A few but abundant clones were present along various stretches of the river indicating clonal spread and establishment over larger distances within the river. Clonal dispersal at a local scale was more pronounced in river than in pond habitats, indicating a higher relative importance of water flow than bird-mediated dispersal for establishment of P. pectinatus in river sites. Dispersal of seeds and establishment of seedlings were assumed more effective within ponds than in river habitats. Upstream forest ponds can be regarded as source populations and refuges of clonal diversity for recolonization of the more stressful downstream river habitat.  相似文献   

7.
Higher levels of genetic diversity of river macrophytes are expected in downstream parts because of potential accumulation of various genotypes from upstream sites. We assessed the clonal diversity and spatial genetic structure of fennel pondweed (Potamogeton pectinatus or Stuckenia pectinata) populations with emphasis on the estimation of dispersal via clonal propagules along a river in connection to upstream ponds. We analysed genetic diversity of 354 plant shoots sampled in 2005 and 2006 at three pond and five river sites in the Woluwe river catchment (Belgium). Nine microsatellite DNA markers revealed 88 genets of which 89% occurred in only one site. Clonal propagule dispersal was detected up to 10 km along the river. Few multilocus genotypes were repeatedly present along a major part of the river indicating vegetative spread. Populations of ponds contained a higher amount of clonal diversity, indicating the importance of local seed recruitment. A fine-scaled spatial genetic structure indicated that most seedling recruitment occurred at a distance <5 m in pond populations whereas clones in river sites were unrelated and showed no spatial autocorrelation. The clonal diversity decreased along the river from upstream to downstream due to establishment of few large clones.  相似文献   

8.
The genus Fragaria (Rosaceae) contains 24 species, including hybrid species such as the garden strawberry (Fragaria × ananassa Duch.). Natural hybridization between Fragaria species has repeatedly been reported, and studies on the hybridization potential between F. × ananassa and its wild relatives have become increasingly important with the outlook for genetically modified garden strawberries. In Europe, a candidate species for hybridization with garden strawberries is the common woodland strawberry (Fragaria vesca L.). Although a previous field survey indicated that the potential for hybridization between F. vesca and F. × ananassa is low, it is not clear whether the lack of natural hybrids is caused by known pre- and postzygotic barriers, or whether hybrid plants lack the fitness to establish in natural F. vesca populations. We grew different F. vesca and F. vesca × F. × ananassa hybrid clones with and without competition in a greenhouse and assessed biomass production, clonal reproduction, and sexual reproduction of plants. While some hybrid clones exceeded F. vesca in biomass production, general clonal reproduction was much lower and delayed in hybrids. Furthermore, hybrids were sterile. These results demonstrate a mechanism by which the general lack of F. vesca × F. × ananassa hybrids in natural habitats can be explained, in addition to the known low hybridization potential between garden and woodland strawberries. We conclude that hybrids have a competitive disadvantage against co-occurring F. vesca plants due to inferior and delayed clonal reproduction, and that the potential for hybrid establishment under natural conditions is low.  相似文献   

9.
We studied the population genetic and clonal structure of the endangered long-lived perennial plant Narcissus pseudonarcissus using random amplified polymorphic markers. Estimates for mean gene diversity within 15 populations of N. pseudonarcissus of three neighbouring geographical regions were high in comparison to other long-lived perennials (H eN = 0.33). The genetic diversity of the two smallest populations (<200 plants) was significantly reduced, indicating loss of genetic variability due to drift. The analysis of the population genetic structure revealed a significant genetic differentiation both between regions (ΦST = 0.06) and between populations within regions (ΦST = 0.20). However, there was incomplete correspondence between geographical regions and the population genetic structure. In order to preserve the overall genetic variation in wild populations of N. pseudonarcissus, management measures should thus aim to protect many populations in each region. The spatial genetic structure within populations of N. pseudonarcissus was in agreement with an isolation by distance model indicating limited gene flow due to pollinator behaviour and restricted seed dispersal. The very restricted spatial extent of clonal growth (<5 cm) and the high level of clonal diversity indicate that clonal growth in N. pseudonarcissus is not an important mode of propagation and that management measures should favour sexual reproduction in order to avoid further reductions in the size and number of populations.  相似文献   

10.
For plants capable of both sexual and clonal reproduction, the relative frequency of these reproductive modes is influenced by genetic and ecological factors. Acacia carneorum is a threatened shrub from the Australian arid zone that occurs as a set of small, spatially isolated populations. Sexual reproduction appears to be very rare: despite regular flowering, only two populations set seed. It is not known whether this reflects an ancient pattern, or results from rapid land use changes following arrival of Europeans in the region 150 years ago. We assessed genotypic variation throughout the range of A. carneorum using AFLP markers, to elucidate the relative importance of clonal and sexual reproduction in this species’ history. Clonal diversity (CD) within populations ranged from 0 to 0.820 (mean CD = 0.270, SE = 0.094), but the relative abundances of genets were typically highly skewed. On average, the two fruiting populations had higher CD (mean CD = 0.590, SE = 0.265) than non-fruiting populations (mean CD = 0.179, SE = 0.077) (t = 2.315, p = 0.049), but most populations contained multiple genets. All genets were population-specific, and there was substantial divergence among populations (Φ ST = 0.690), implying a long history of isolation. We conclude that clonality has predominated in A. carneorum populations, with occasional sexual recruitment, and that current failure of most populations to set seed likely reflects both a long history of asexual reproduction and effects of habitat disturbance. Conservation of this species may benefit from translocations to increase genotypic diversity within populations.  相似文献   

11.
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5–56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.  相似文献   

12.
Cirsium rivulare is a perennial plant that forms patches consisting of ramets resulting from sexual reproduction by seeds and asexual propagation by rhizome fragmentation. We examined the relationship between the size of patches and genetic differentiation of ramets within and between patches. Ramet genotypes were identified using microsatellites. From among 216 ramets examined in the studied population, 123 had a unique genotype, while 93 were clonal, i.e., their genotype was present in at least two ramets. The frequency of ramets with clonal genotypes was 43% and the frequency of unique genotypes was 57%. Ramets with identical genotypes were dominant in small patches. Large patches consisted of ramets with both unique and clonal genotypes, usually with the predominance of the latter. A molecular variance analysis showed the highest level of variance between ramets and the lowest between patches. Additionally, 21.02% of the total variance was recorded between ramets and within patches. The size of patches was correlated with the number of clonal ramets and the number of unique ramets, but it was not correlated with the clonality index. This population of C. rivulare is currently in a phase of decline from 30 years of vegetation transformation, and there appears to have been an increase in sexual propagation based growth over clonal propagation based growth. Hence, a predominance of ramets with unique genotypes was observed. This can happen as a result of disintegration of large patches and formation of gaps between them. These gaps become convenient places for seed germination and the subsequent development of seedlings.  相似文献   

13.
The mode of reproduction may influence the spread of invasive species by affecting evolutionary potential and dispersal ability. We sampled 51 introduced North American populations of the clonal aquatic plant Butomus umbellatus L. (flowering rush) and found extreme variation in sexual fertility caused by polyploidy. Populations consisted of diploids that produced thousands of viable seeds or of sexually sterile triploids. Although a trade-off between sexual and clonal reproduction predicts that the sexual sterility of triploids would be compensated for by greater clonal reproduction, a greenhouse experiment involving eight diploid and 10 triploid populations showed that diploid plants not only invest substantially in sexual structures but also make hundreds of tiny clonal bulbils on both rhizomes and inflorescences. In contrast, triploids do not make bulbils and have very limited scope for clonal multiplication and dispersal. Diploid populations were more frequent than triploid populations, especially in the Great Lakes region. This is probably because of the difference between cytotypes in clonal rather than sexual reproduction, as genetic analyses indicate a general lack of sexual recruitment in North America. Although triploids were less common, they have a wider geographical distribution. This could be due to a greater ecological tolerance resulting from polyploidy. However, genetic evidence suggests that triploids have become widespread via their use in and escape from horticulture. North America is being colonized by two distinct forms of B. umbellatus that differ strongly in reproductive strategy as well as the vectors and pathways of invasion.  相似文献   

14.
Small changes in morphology can affect the performance and functions of organisms and hence their ecological success. In modular constructed plants, contrasting growth strategies may be realized by differences in the spatial arrangement and size of shoots. Such differences change the way in which meristems and resources are assigned to various functions during the lifespan of a plant. If such changes include the capacity to spread clonally, sexual reproduction may also be affected. I compare patterns in vegetative growth and sexual reproductive traits in four allopatric species ofEpilobium which are sometimes considered as subspecies of a single polymorphic taxon. The four species differ in the location of the buds which annually renew the aerial shoot system.E. dodonaei andE. steveni do not spread clonally and are characterized by a shrub-like habit.E. fleischeri, a species occurring only in the Alps, andE. colchicum, which occurs in the upper region of the Caucasus mountains, both produce buds on horizontal roots or plagiotropic shoots. Both alpine species exhibiting clonal growth have smaller shoots, fewer fruits and smaller seeds than the lowland species. An intraspecific trade-off between seed number per fruit and seed mass is realized. Both alpine species produce more seeds per fruit at the expense of seed mass. The morphological relationship between the four species and their geographical distribution suggest that clonal growth inE. fleischeri (restricted to the Alps) andE. colchicum (restricted to the Caucasus) is adaptively associated with the stressful conditions of alpine habitats. Our results suggest that clonal growth is not necessarily correlated with reduced reproduction by seeds. The success of plants which are already established may largely depend on clonal spread, but the colonization of new habitats depends on the production of a large number of small seeds with high dispersability.  相似文献   

15.
The relative importance of sexual and clonal reproduction for population growth in clonal plants is highly variable. Clonal reproduction is often more important than sexual reproduction but there is considerable interspecific variation and the importance of the two reproductive modes can change with environmental conditions. We carried out a demographic study on the woodland strawberry (Fragaria vesca), a widespread clonal herb, at 12 sites in Switzerland during 2 years. Study sites were selected in two different habitats, i.e., forest and forest edge. We used periodic matrix models to estimate annual population growth rates and carried out prospective analyses to identify life cycle components that influence population growth rates most. Retrospective analyses were applied to study how the two different habitats affected population dynamics. Furthermore, we tested whether trade-offs between sexual and clonal reproduction occurred. There were large differences in annual population growth rates between sites and large within-site differences between years. Results of the prospective analyses clearly indicate that clonal reproduction is the dominant reproductive pathway whereas sexual reproduction is rather insignificant for population growth. Compared to forest habitats, forest edge habitats had higher population growth rates in the first year but smaller growth rates in the second year. We attribute these differing habitat effects to different water availabilities during consecutive years. No trade-offs between sexual and clonal reproduction were found. In conclusion, population growth of F. vesca relies heavily on clonal reproduction. Furthermore, reproduction and survival rates of F. vesca depend highly on spatio-temporal variation of environmental conditions.  相似文献   

16.
The regional distribution of a plant species is a result of the dynamics of extinctions and colonizations in suitable habitats, especially in strongly fragmented landscapes. Here, we studied the role of spatial dynamics of the long-lived, clonal pioneer plant Geum reptans occurring on glacier forelands in the European Alps. We used demographic data from several years and sites in the Swiss Alps in combination with dispersal data to parametrize a matrix model for G. reptans to simulate extinctions, colonizations and spatial spread of established populations on glacial forelands. We used different scenarios with varying germination rates, wind and animal dispersal capabilities, and modes of spatial spread (seed-only vs clonal spread), resulting in population growth rates (λ) ranging from 1.04 to 1.20. Our results suggest that due to the low germination rate (~1%) and the very limited wind dispersal distances (99.8% of seeds are dispersed < 5 m), G. reptans has a low probability of establishing new populations and a very low spatial spread by seed dispersal alone. In contrast to the low rate of establishment, the persistence of established populations is high and even populations of only a few individuals have an extinction probability of less than 25% within 100 years. This high persistency is partly due to clonal reproduction via aboveground stolons. Clonal reproduction increases the population size and contributes considerably to the spatial spread of established populations. Our simulation results together with the known pattern of molecular diversity of G. reptans indicate that the occurrence of populations of this species in the Alps is unlikely to be a result of recent colonizations by long-distance dispersal, but rather a result of post-glacial colonizations by large migrating populations that were fragmented when glaciers retreated. Additionally, our simulations suggest that the currently observed high rates of glacial retreat might be too fast for pioneer plants, such as G. reptans, to keep up with the retreating ice and therefore might threaten existing populations.  相似文献   

17.
J. M. Sarneel 《Hydrobiologia》2013,710(1):219-225
Flowing water can disperse a high number of seeds and vegetative propagules over long distances and is therefore a very important dispersal vector in wetland habitats. Although the dispersal of seeds is relatively well studied, the dispersal of vegetative propagules has received less attention. However, in riparian and aquatic systems where many species have clonal growth forms, it can be very important. The relative importance of vegetative propagules in the dispersal of fen species was assessed first by determining their relative abundance in the field and second, by determining the buoyancy of plant fragments of ten fen species experimentally. On average, vegetative propagules made up 3.2–58.9% of the total propagule number (mainly Elodea nutallii). Buoyancy of the tested species ranged from 25 days to over 6 months. Surprisingly, the propagules of Stratiotes aloides and Hydrocharis morsus-ranae increased buoyancy when spring started (after ca. 100 days). The results demonstrate that vegetative propagules of riparian and aquatic fen species have a high capacity to disperse over long distances via water and are therefore likely to play an important role in the colonisation of new habitats. Especially because in nine out of the ten species tested, over 50% of the propagules were still viable after 6 months of floating.  相似文献   

18.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

19.
Arabidopsis halleri, a close wild relative of A. thaliana, is a clonal, insect-pollinated herb tolerant to heavy metals (Zn, Pd, Cd) and a hyperaccumulator of Zn and Cd. It is of particular interest in the study of evolutionary processes and phytoremediation. However, little is known about its population gene flow patterns and the structure of its genetic diversity. We used five microsatellite loci to investigate the genetic structure at a fine spatial scale (10 cm to 500 m) in a metallicolous population of A. halleri. We also studied the contributions made by clonal propagation and sexual reproduction (seed and pollen dispersal) to the genetic patterns. Clonal diversity was high (D(G) > 0.9). Clonal spread occurs only at short distances (< 1 m). Both clonal spread and limited dispersal, associated with sexual reproduction, contribute to the significant spatial genetic structure revealed by spatial autocorrelation analysis. The shape of the autocorrelogram suggests that seed dispersal is restricted and pollen flow extensive, which may be related to intense activity by insect pollinators. Clonal spread was more extensive in the lowly polluted zone than in the highly polluted zone. This cannot be interpreted as a strategy for promoting the propagation of adapted genotypes under the harshest ecological constraints (highest heavy metal concentrations). The higher fine-scale spatial genetic structure found in the lowly polluted zone can be ascribed to plant densities that were lower than in the highly polluted zone. No evidence of genetic divergence due to spatial heavy metal heterogeneity was found between lowly and highly polluted zones.  相似文献   

20.
Aechmea nudicaulis is a clonal bromeliad common to the Brazilian Atlantic forest complex and is found abundantly in the sandy coastal plain vegetation (restinga) on the north coast of Rio de Janeiro state, Brazil. This restinga site is structured in vegetation islands, and the species plays a key role as a nurse plant, much favoured by its clonality. We studied the clonal structure and consequences of clonality on the population spatial genetic structure (SGS) of this species using six nuclear microsatellites. Spatial autocorrelation analysis was performed to study the effects of sexual and clonal reproduction on the dispersal of A. nudicaulis. Analyses were performed at the genet (i.e. excluding clonal repeats) and ramet levels. Genotypic richness was moderate (R = 0.32), mostly as a result of the dominance of a few clones. The spatial distribution of genets was moderately intermingled, the mean clone size was 4.9 clonal fragments per genet and the maximum clonal spread was 25 m. Expected heterozygosities were high and comparable with those found in other clonal plants. SGS analyses at the genet level revealed significantly restricted gene dispersal (Sp = 0.074), a strong SGS compared with other herbaceous species. The clonal subrange extended across 23 m where clonality had a significant effect on SGS. The restricted dispersal and SGS pattern in A. nudicaulis, coupled with high levels of genetic diversity, indicated a recruitment at windows of opportunity (RWO) strategy. Moreover, the spatial distribution of genetic variation and the habitat occupation pattern in A. nudicaulis were dependent not only on the intrinsic biological traits of the species (such as spacer size and mating system), but also on biotic interactions with neighbouring species that determined suitable habitats for germination and the establishment of new genets. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 329–342.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号