首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Questions

Rhododendron ponticum subsp. baeticum is an invasive shrub of growing concern in continental Europe, but little is known about its impact on native plant communities. Here we ask: do environmental conditions differ between forest stands invaded by it and uninvaded stands? Do these differences correlate with R. ponticum's cover? Are these differences associated with differences in taxonomic and functional diversity of vascular plant species of the herb layer? Can these vegetation changes be explained by the sorting of certain life-history traits by R. ponticum-induced environmental changes?

Location

Several forests invaded by R. ponticum in the French Atlantic domain.

Methods

We recorded vegetation composition and a number of environmental variables in 400-m2 plots that were established in 64 paired forest stands (32 invaded vs 32 uninvaded). We compiled traits from existing databases. We computed several metrics of taxonomic and functional diversity. We compared environmental variables and diversity metrics between invaded and uninvaded stands. We used correlation and regression analyses to relate them with R. ponticum's cover. We ran RLQ and fourth-corner analyses to explore the relationships between R. ponticum invasion, environmental variables, species traits, and vegetation composition.

Results

Independent of its abundance, R. ponticum invasion was associated with lower light arrival at the forest floor and increased litter thickness. Concomitantly, species richness and diversity and trait diversity were reduced. The major driver of species assemblages was soil pH, which strongly interacted with the invasion gradient. R. ponticum did not sort species according to traits associated with shade tolerance and thick-litter tolerance. However, tree and shrub saplings were more abundant in invaded than uninvaded stands, at the expense of graminoid and fern species.

Conclusions

As R. ponticum becomes the dominant shrub, it exerts new selection forces on life-history traits of extant species, mostly via reduced light availability, increased litter thickness, and physical competition, thereby reducing taxonomic and functional diversity of the herb layer, without impeding tree and shrub self-regeneration, at least in the short term.  相似文献   

2.
Plants are connected to habitats by functional traits which are filtered by environmental gradients. Since tree species composition in the forest canopy can influence ecosystem processes by changing resource availability, litter accumulation, and soil nutrient content, we hypothesised that non-native invasive trees can establish new environmental filters on the understorey communities. In the hardwood floodplain forests in Northern Italy, the invasive trees Robinia pseudoacacia L. and Prunus serotina Ehrh. are the dominant canopy species. We used trait data assembled from databases and iterative RLQ analysis to identify a parsimonious set of functional traits responding to environmental variables (soil, light availability, disturbance, and stand structure) and the dominant native and invasive canopy species. Then, RLQ and fourth-corner analysis was conducted to investigate the joint structure between macro-environmental variables and species traits and functional groups were identified. The trait composition of the herb-layer was significantly related to the main environmental gradients and the presence of the invaders in the canopy showed significant relationships with several traits. In particular, the presence of P. serotina may mitigate or even erase the effect of disturbances, maintaining a stable forest microclimate and thus favouring ‘true’ forest species, while R. pseudoacacia may slow down forest succession and regeneration by establishing new stable associations with a graminoid-dominated understorey. The impact of the two invasive trees on herb layer composition appears to differ, indicating that different management and control strategies may be needed.  相似文献   

3.
Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray–Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.  相似文献   

4.
Invasions are associated with loss of diversity and changes in species composition. This study aims to provide evidence if this loss happens at random or if the loss is related to functional traits of native species. Traits of species in communities dominated by 13 plants alien to Central Europe were compared to those found in the adjacent uninvaded vegetation. There is a weak but significant non-random pattern in the distribution of traits between the invaded and adjacent uninvaded vegetation. For example, species possessing a taproot, annuals but also juveniles of trees tend to be proportionally more abundant in the invaded vegetation, suggesting they are impacted less than species with high clonal index, perennial polycarpic species and species without a taproot, which are proportionally more represented in the uninvaded vegetation. Fast laterally spreading species, trees’ juveniles and woody species in general are proportionally more frequent in the invaded vegetation, while biennials, slow laterally spreading species but also shrubs are proportionally more frequent in the uninvaded vegetation. Juveniles of trees may compete successfully with the aliens due to being adapted to thrive in low light conditions. Annuals may thrive in the invaded communities by possessing a life strategy different from most of the selected aliens. Possessing a taproot appears to be another trait important for the successful coexistence with the dominant invasive aliens, possibly pointing to the importance of underground competition. Clonal perennial polycarpic herbs are species functionally most similar to most of the selected aliens, and these species were found to be most underrepresented in the invaded vegetation.  相似文献   

5.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

6.
Species variation in functional traits may reflect diversification relating to convergence and/or divergence depending on environmental pressures and phylogenetic history. We tested trait-environment relationships and their basis in finer-scale evolutionary processes among nine extant Hawaiian species of Scaevola L. (Goodeniaceae), a taxon with a complex history of three independent colonizations by different phylogenetic lineages, parallel ecological specialization, and homoploid hybridization events in Hawai‘i. Using a wild population for each species, we evaluated traits related to plant function (morphology, leaf and wood anatomy, nutrient and carbon isotope composition). Hawaiian Scaevola species were distributed across coastal, dry forest and wet forest environments; multivariate environmental analysis using abiotic and biotic factors further showed that species from distantly related lineages inhabited similar environments. Many traits correlated with environment (based on the multivariate environmental analysis), considering both distantly related species and more closely related species. Scaevola species within shared habitats generally showed trait convergence across distantly related lineages, particularly among wet forest species. Furthermore, trait diversification through divergence was extensive among closely related Scaevola species that radiated into novel environments, especially in plant morphology and traits affecting water relations. Homoploid hybrid-origin species were “intermediate” compared to their ancestral parent species, and possessed trait combinations relevant for their current habitat. The diversity in functional traits reflected strong influences of both ecology and evolutionary history in native Hawaiian Scaevola species, and trait correspondence with environment was due to the combination of multiple processes within the taxon: trait pre-adaptation and filtering, evolutionary convergence, divergence, and hybridization.  相似文献   

7.
Whether non-native plant invasions are causes, consequences, or independent of the low species diversity in recipient ecosystems remains a debated question. We tried to test these three hypotheses in the special case of the American black cherry ( Prunus serotina Ehrh.), a gap-dependent tree species, which is invading European temperate forests. We compared plant communities, soil properties, and disturbance history between P. serotina -invaded and uninvaded paired-stands in a managed mixed forest. Relationships between invasion, disturbances, plant communities, and environmental conditions were investigated using redundancy analyses with variation partitioning. Several soil characteristics differed between paired stands, but were rather components of stand invasibility than invasion effects, except for topsoil available phosphorus. The disturbance history was similar among paired stands except for the amount of storm-induced tree falls, which correlated with the invader's density. Wild boar-disturbed soil areas were more important beneath P. serotina canopies, suggesting a positive feedback on its own establishment. Overall, species assemblages in invaded and uninvaded stands were similar; their ecological inconsistency suggested a management-sustained non-equilibrium. Habitat conditions and disturbances explained most of the variation in both plant diversity and P. serotina density, the last two factors exhibiting a weak direct association. We conclude that in managed forest ecosystems where plant communities are mainly driven by non-interactive factors and immigration processes, non-native plant species can naturalize without being directly influenced by measured features of the plant community in the receiving environment on the short term.  相似文献   

8.
以我国中部渭河南部流域山区和平原生态区的底栖动物为研究对象,通过计算29个生物性状类别和7个功能多样性指数,比较了不同生态区的生物性状组成和功能与性状多样性指数差异性;应用综合RLQ和fourth-corner方法探索底栖动物生物性状组成与土地利用和理化变量的关系;通过广义线性模型(GLM)比较不同空间尺度环境变量对底栖动物功能与性状多样性指数影响的生态区差异性。研究发现,共18个底栖动物性状组成在山区和平原间存在显著差异性,其中具有无庇护所和以叶片为庇护所材料、外骨骼轻微骨化和骨化良好、草食性、捕食性等生物性状的底栖动物栖息于栖境状况较好的山区,体壁呼吸、虫体柔软、集食者等生物性状更多的集中在人类活动较严重的平原区。除了功能均匀度指数外,山区的性状和功能多样性指数均显著高于平原,说明平原环境干扰显著降低了底栖动物性状和功能多样性。综合RLQ和fourth-corner方法表明底栖动物生物性状对环境胁迫的响应存在可预测性。GLM模型结果表明,山区和平原生物性状和功能多样性指数受到不同空间尺度土地利用和理化环境变量的影响:流域尺度城镇用地、水温和TN含量是影响山区功能和性状多样性指数模型的重要环境变量,但平原区河段尺度农业用地面积百分比和平均水深是影响功能和性状多样性的主要因子。  相似文献   

9.
Despite the recent rapid growth of tropical dry forest succession ecology, most studies on this topic have focused on plant community attribute recovery, whereas animal community successional dynamics has been largely overlooked, and the few existing studies have used taxonomic approaches. Here, we analyze the successional changes in the bee community in a Mexican tropical dry forest, by integrating taxonomic (species, genus, and family diversity) and functional (sociability, nesting strategy, and body size) information for bees. Over one year, in a successional chronosequence (2–67 years after abandonment) we collected 469 individual bees, representing five families, 36 genera, and 69 species. Linear modeling showed decreases in taxonomic diversity with succession, more strongly so for species. Bee species turnover along succession ranged from moderate to high, decreasing slightly at intermediate stages. An RLQ analysis (ordination method that allows relating environmental variables with functional attributes) revealed clear relations between bee functional traits and the plant community. RLQ axis 1 was positively related to vegetation structural and diversity variables, and to eusociality, while solitary, parasociality, and ground nesting was negatively associated with it. Early successional fallows attract mostly solitary and parasocial bees; older fallows tend to attract eusocial bees with aerial nesting. The continuous taxonomic turnover observed by us and the functional analysis suggest that the disappearance of old fallows from agricultural landscapes would likely result in significant reductions and even local extinctions of particular bee guilds. Considering the low viability of preserving large mature tropical dry forest tracts, the conservation of older successional stands emerges as a crucial component of landscape management.Abstract in Spanish is available with online material.  相似文献   

10.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

11.
Successions are a central issue of ecological theory. They are governed by changes in community assembly processes that can be tracked by species’ traits. While single‐trait‐based approaches have been mostly promoted to address community assembly, ecological strategies actually encompass tradeoffs between multiple traits that are relevant to succession theory. We analyzed plant ecological strategies along a 140‐year‐long succession primary succession of 52 vertical outcrop communities after roadwork. We performed a RLQ analysis to relate six functional traits, associated with resource acquisition, competition, colonization ability and phenology, to the age of the outcrops. We found the prominence of two main axes of specialization, one related to resource acquisition and the other to reproduction and regeneration. We further examined the community‐level variation in ecological strategies to assess the abiotic and biotic drivers of community assembly. Using trait‐based statistics of functional richness, regularity and divergence, we found that different processes drove the variation in ecological strategies along the axes of specialization. In late succession, functional convergence was detected for the traits related to resource acquisition as a signature of habitat filtering, while the coexistence of contrasted strategies was found for the traits related to reproduction and regeneration as a result of spatial micro‐heterogeneity. We observed a lack of niche differentiation along the succession, revealing a weak importance of biotic interactions for the regulation of community assembly in the outcrops. Overall, we highlight a prominent role of habitat filtering and spatial micro‐heterogeneity in driving the primary succession governed by water and nutrient limitation.  相似文献   

12.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

13.
The Argentine ant, Linepithema humile (Mayr), is an invasive species that has been associated with various negative impacts in native communities around the world. These impacts, as for other invasive ants, are principally towards native ant species, and impacts on below-ground processes such as decomposition remain largely unexplored. We investigated the relationship between Argentine ants and invertebrate fauna, litter decomposition and soil microbial activity between paired invaded and uninvaded sites at two locations in Auckland, New Zealand, where there has been no research to date on their impacts. We examined the diversity and composition of invertebrate and microorganisms communities, and differences in soil and litter components. The composition of invertebrates (Order-level, ant and beetle species) was different between invaded and uninvaded sites, with fewer ants, isopods, amphipods, and fungus-feeding beetles at the invaded sites, whereas Collembola were more abundant at the invaded sites. There were significant differences in soil chemistry, including higher carbon and nitrogen microbial biomass at uninvaded sites. Several litter components were significantly different for Macropiper excelsum. The fibre content of litter was higher, and key nutrients (e.g. nitrogen) were lower, at invaded sites, indicating less breakdown of litter at invaded sites. A greater knowledge of the history of invasion at a site would clarify variation in the impacts of Argentine ants, but their persistence in the ground litter layer may have long-term implications for soil and plant health in native ecosystems.  相似文献   

14.
? Linking tree diversity to carbon storage can provide further motivation to conserve tropical forests and to design carbon-enriched plantations. Here, we examine the role of tree diversity and functional traits in determining carbon storage in a mixed-species plantation and in a natural tropical forest in Panama. ? We used species richness, functional trait diversity, species dominance and functional trait dominance to predict tree carbon storage across these two forests. Then we compared the species ranking based on wood density, maximum diameter, maximum height, and leaf mass per area (LMA) between sites to reveal how these values changed between different forests. ? Increased species richness, a higher proportion of nitrogen fixers and species with low LMA increased carbon storage in the mixed-species plantation, while a higher proportion of large trees and species with high LMA increased tree carbon storage in the natural forest. Furthermore, we found that tree species varied greatly in their absolute and relative values between study sites. ? Different results in different forests mean that we cannot easily predict carbon storage capacity in natural forests using data from experimental plantations. Managers should be cautious when applying functional traits measured in natural populations in the design of carbon-enriched plantations.  相似文献   

15.
Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.  相似文献   

16.
Wildflower plantings are an important mitigation tool within agri-environmental schemes to counter insect decline in resource-scarce agricultural landscapes. Effectiveness of wildflower plantings for insect conservation is typically studied at the community or species level. It is the individual, however, that is subject to changing abiotic and biotic conditions, not the species per se. Accordingly, functional traits of individuals, i.e., the intraspecific functional diversity within species, likely mediate responses to wildflower resources and landscape context. Here we focused on the ecologically and economically important wild insect pollinator Bombus terrestris to study its intraspecific functional diversity and plant-pollinator individual interactions in wildflower plantings. We found considerable trait variation among flower-visiting B. terrestris workers. Locally, this variation could be attributed to flowering plant traits, with larger workers visiting larger inflorescences and individuals with longer tongues preferentially feeding on zygomorphic but not radially symmetrical flowers. In addition, wildflower plantings with high floral abundance attracted individuals with larger pollen baskets. At the landscape scale, increasing proportion of arable land resulted in smaller B. terrestris individuals in wildflower plantings, and a decrease in the overall size diversity of workers. These findings highlight the so far little considered role of intraspecific variation in functional traits of wild pollinators, which can mediate the trait-matching between plants and pollinator individuals. Landscape simplification from agriculture threatens intraspecific pollinator diversity, with potential harmful effects for pollinator fitness and plant reproduction. Tailored wildflower plantings can thus serve as an important tool to increase intraspecific variation in simplified landscapes. When designing seed mixtures for these plantings, high complementarity in plant traits is key for promoting high intraspecific trait diversity of bumblebees and potentially of other associated insect species.  相似文献   

17.
Increasing attention in invasion biology is being paid to measuring and understanding the impacts of invasive species. For plant invasions, however, the impact of invasion on soil seed bank communities has been under-studied. At six sites in southern Germany, we investigated whether areas invaded by Solidago gigantea and Solidago canadensis experienced a reduction in seed bank species richness, size and diversity, and a change in species composition compared to adjacent uninvaded areas. We found no overall effect of invasion on seed bank size, or on species richness and diversity. Seed bank size significantly decreased from 0–5 cm to 5–10 cm depth in both invaded and uninvaded areas. A significant amount of variation in species composition was explained by invasion, but it was only one-tenth of that explained solely by site effects. Our study suggests that invasion by Solidago species may not have the same impacts on the soil seed banks of native species as other invasive perennial forbs that have so far been studied.  相似文献   

18.
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics.  相似文献   

19.
To evaluate the extent to which landslides affect community dynamics and consequent species diversity in a beech-dominated forest, differences in the composition and size structure of tree species were compared between landslide and adjacent stable (control) stands. Demography and changes in size were compared between the two stands over a 5-year period about 60 years after a landslide. In the control stand, replacement occurred even amongst late-successional species, with beech (Fagus crenata)—the most dominant species—increasing in relative abundance. In the landslide stand, very few large individuals of late-successional species occurred, whereas large individuals of early-successional species occurred only in the landslide stand. The traits indicate that the landslide strongly facilitated species diversity, not only by reducing the dominance of late-successional species, but also by promoting recruitment of early-successional species. However, new recruitment of early-successional species was inhibited in the landslide stand, although we observed succeeding regeneration and subsequent population growth of late-successional species there. As a result, the relative dominance of late-successional species increased with succession after the landslide, thus decreasing future species diversity. In beech-dominant forest landscapes in Japan that include communities with different developmental stages, the mosaic of serial stages may facilitate species diversity after a landslide.  相似文献   

20.
Following its introduction in the late 1960s, Broussonetia papyrifera L. Vent. Moraceae (paper mulberry) has emerged as a major exotic invasive species in Ghana's forest ecosystems. This study was carried out to assess the effects of B. papyrifera invasion on community composition in forest and forest–savannah transition ecosystems. Comparative and removal experiments were conducted in paired B. papyrifera invaded versus uninvaded plots. In the comparative assessment, species composition was found to be similar in both invaded and uninvaded plots. However, relative per cent cover of resident species and guilds including Chromolaena odorata, indigenous broadleaves and indigenous grasses were significantly lower in invaded plots. Seven months after B. papyrifera was experimentally removed from invaded stands, cover by indigenous broadleaves increased by 35%, as against only 5% in control plots at the forest site. However, at the transition site, the increase in per cent cover of indigenous broadleaves (18%) was not significantly different from control (2.5%) plots. We conclude that B. papyrifera has the capacity to reduce the abundance of indigenous broadleaf species, although its removal is more likely to favour regeneration in a forest than a forest–savannah transition ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号