首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Shot peening is widely used for surface treatment of hip implants. Shot peening with steel balls followed by a cleaning process with glass beads is used for introduction of negative stress in the production of morse taper junctions of the MRP-Titan stem. An increasing number of publications in maxillofacial surgery and orthopaedic surgery show that there is a significant contamination of Alumina or glass blasted surfaces. Latest research suggested an association between contaminant particles with early loosening of endoprostheses (third body wear). The aim of this study is to evaluate the amount and the effects of surface contamination with glass particles on morse taper junctions of implants and explants of the MRP-Titan stem. MATERIAL AND METHOD: The surface of morse taper junctions of the MRP-Titan stem (5 original-package implants and explants each) are analysed for glass particle contamination. A field emission scanning electron microscopy (LEO 1525) is used for the detection of the glass-particles on the implant surface with a backscattered electron detector. The relative surface area covered by particles was calculated by means of an image analyzing software (analySIS, Soft Imaging System GmbH). RESULTS: The surface of the implants showed a considerable contamination with glass particles with a mean of 6.67 +/- 0.82% compared to 2.06 +/- 0.74% on the surface of the explants. The difference was statistically significant (p<0.0001). DISCUSSION: The results of this study show that there is a relative high percentage of contamination with glass particles on shot peened morse taper junctions of the MRP-Titan stem. This contamination is significantly lower on the surface of the explants. With respect to third body wear and osteolysis in total hip arthroplasty further studies are necessary to minimize contamination while maintaining adequate surface quality.  相似文献   

2.
The relative hygienic status of 16 stainless steel surfaces, characterised by topography and surface free energy was investigated. B. thuringiensis spores suspended in Bechamel sauce was chosen as the test fouling suspension. Surface topography was assessed using 10 standardised roughness parameters, along with scanning electron microscope observations. The number of residual adhering spores after a fouling and cleaning in place procedure was found to be influenced by the topography of the stainless steel surface, but not by the surface free energy. Among the various roughness parameters, RA, RRR RPK and RVK were shown to be related to the hygienic status. Microscopic observations demonstrated the influence of the shape and size of surface irregularities on the level of residual soil after cleaning. This confirms that the use of only one roughness parameter, usually RA, is not sufficient in defining the hygienic status of stainless steel surfaces.  相似文献   

3.
The physical roughness of a surface changes when freshwater biofilms colonize and grow on it and this has significant implications for surfaces enclosing water conveying systems such as pipelines and canals. Plates with surfaces initially artificially roughened with varying grit size were deployed in an open channel system and biofilms were allowed to grow on the exposed surface. The plates were retrieved at intervals in time and their surfaces mapped using close range photogrammetry. For a fine grit surface (0.5–4 mm particles), diatom-dominated biofilms initially grew between the roughness elements; they subsequently developed as a mat to create a physically smoother outer surface than the underlying rough surface. For a coarse grit surface (2–4 mm), biofilms colonized faster; in one instance, larger clumps of biofilm were observed as transverse ripples across the plate.  相似文献   

4.
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered.  相似文献   

5.
Many representatives of the beetle family Chrysomelidae exhibit a distinctive sexual dimorphism in the structure of adhesive tarsal setae. The present study demonstrates the influence of surface roughness on the friction force of Leptinotarsa decemlineata males and females. The maximum friction force of individual beetles was measured on epoxy resin surfaces (smooth and with asperities ranging from 0.3 to 12.0 microm) using a centrifugal force tester. On the smooth surface, no considerable differences between males and females were found, whereas on rough surfaces, females attached significantly (up to two times) stronger than males. Clawless beetles generated lower forces than intact ones, but demonstrated similar differences between males and females. The results indicate that the female adhesive system has its main functional trait in a stronger specialisation to rough plant surfaces whereas the adhesive system of males possess a certain trade-off between attachment to rough plant surfaces during locomotion on vegetation and to the smooth surface of the female elytra, while mating.  相似文献   

6.
This experimental study on laser-textured implants aimed to evaluate periimplant bone elasticity and ultimate stress of the bone-implant interface in a rabbit femur model. After randomization, two cylindrical Ti6Al4V samples (3.5 mm wide, 5.5 mm long) were transcortically implanted in each femur of 15 female New Zealand White Rabbits. Polished implants had been laser-textured with 100, 200, and 300 microm diameter pores, and another corundum blasted implant was additionally textured with 200 microm pores. Twelve weeks into the experiment, a modified push-out test was performed. The median shear modulus indicating the elasticity of the periimplant bone was 41.12 MPa for the proximal implant location and 25.38 MPa for the distal, without evidence for significant differences between implant types. Taking into account the median ultimate shear stress for 200 microm implants with and without corundum blasting, no significant difference could be demonstrated. However, for blasted 200 microm implants a statistically significant (p<0.025) relative gain in ultimate shear stress of 41% and 17% was proven in comparison with 100 and 300 microm implants, respectively. Non-blasted 200 microm implants reached 48% relative gain in respect of 100 microm samples.  相似文献   

7.
The effect of repeated conditioning procedures (25 runs), consisting of soiling (milk and meat products) and cleaning steps, on the hygienic status, physico-chemical properties and surface chemical composition of stainless steel (SS) surfaces, was investigated. Five SSs differing in grade and finish were used. Both soiling and surface cleaning/conditioning procedures resulted in a similar increase in the surface contamination with carbon, while the changes in the basic component of the surface free energy depended on the conditioning procedure. The passive film was also affected, the Fe/Cr ratio in particular. The hygienic status was also changed, especially with milk as shown by monitoring the number of residual adhering Bacillus cereus spores after contaminating the surface with spores followed by cleaning. The results show that in food environments, the presence and the nature of conditioning molecules play a major role in the hygienic status of SS surfaces.  相似文献   

8.
The effect of repeated conditioning procedures (25 runs), consisting of soiling (milk and meat products) and cleaning steps, on the hygienic status, physico-chemical properties and surface chemical composition of stainless steel (SS) surfaces, was investigated. Five SSs differing in grade and finish were used. Both soiling and surface cleaning/conditioning procedures resulted in a similar increase in the surface contamination with carbon, while the changes in the basic component of the surface free energy depended on the conditioning procedure. The passive film was also affected, the Fe/Cr ratio in particular. The hygienic status was also changed, especially with milk as shown by monitoring the number of residual adhering Bacillus cereus spores after contaminating the surface with spores followed by cleaning. The results show that in food environments, the presence and the nature of conditioning molecules play a major role in the hygienic status of SS surfaces.  相似文献   

9.
Previous studies have demonstrated greater functions ofosteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 microm to 22 microm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.  相似文献   

10.
The effectiveness of cleaning was investigated through food factory trials and laboratory experiments using a naturally occurring biofilm from a food factory environment and generated biofilms. The efficacy of factory cleaning and disinfection programmes was assessed by swabbing and total viable count (TVC) analysis of surfaces before cleaning, after cleaning and after disinfection. Cleaning produced a 0.91 log reduction in the attached population. Investigation of the effectiveness of a variety of cleaning methods in the removal of a naturally occurring food factory biofilm showed that the high pressure spray and the mechanical floor scrubber, which use a high degree of mechanical action, were most effective. Cleaning trials with biofilms of Pseudomonas aeruginosa or Staphylococcus aureus showed that spraying with water at pressures of 34.5, 51.7 and 68.9 bar did not significantly increase the removal, as assessed by direct epifluorescent microscopy (DEM) and swabbing and TVC analysis, beyond the three log reduction observed at 17.2 bar. The effect of spray time at 17.2 bar showed that increasing spray time from 1 to 10 s did not significantly increase removal of Ps. aeruginosa biofilm. Investigation of the optimum distance of the spray lance from the surface at 17.2 bar was found to be between 125 and 250 mm. The use of an alkaline, acidic or neutral detergent prior to spraying with water at 17.2 bar did not significantly increase the removal of Ps. aeruginosa or Staph. aureus. However, the acidic and alkaline products significantly (P = 0.05) affected the viability of Staph. aureus and Ps. aeruginosa, respectively, thereby minimizing the potential for the spread of contamination.  相似文献   

11.
A novel method of collecting in vivo plasma proteins of humans from osteotomies prepared during insertion of an oral implant is described. A rod containing a collecting portion with a predetermined surface is introduced into the osteomy, removed, and transferred for enzyme-linked immunosorbent assay analysis. Two experiments were used to examine the feasibility of the method. In the first, titanium (Ti) rods with different roughness were exposed for 10 min to the blood. Blasted and acid-etched surfaces adsorbed four times more and acid-etched surfaces adosorbed two times more plasma proteins as compared to machined surfaces. In the second experiment, blasted and acid-etched rods were wetted for 10 s prior to the insertion. The adsorption for fibronectin, albumin, fibrinogen, and IgG was enhanced significantly compared with nonwetted rods. These results are discussed in the light of previous methods used in studies on adsorption. Thus, use of the collecting instrument enables aspects of human plasma–implant interface to be studied in a more realistic manner.  相似文献   

12.
The relative cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

13.
The covalent attachment of organic films and of biological molecules to fused silica and glass substrates is important for many applications. For applications such as biosensor development, it is desired that the immobilised molecules be assembled in a uniform layer on the surface so as to provide for reproducibility and speed of surface interactions. For optimal derivatisation the surface must be appropriately cleaned to remove contamination, to create surface attachment sites such as hydroxyl groups, and to control surface roughness. The irregularity of the surface can be significant in defining the integrity and density of immobilised films. Numerous cleaning methods exist for fused silica and glass substrates and these include gas plasmas, and combinations of acids, bases and organic solvents that are allowed to react at varying temperatures. For many years, we have used a well established method based on a combination of washing with basic peroxide followed by acidic peroxide to clean and hydroxylate the surface of fused silica and glass substrates before oligonucleotide immobilisation. Atomic force microscopy (AFM) has been used to evaluate the effect of cleaning on surface roughness for various fused silica and glass samples. The results indicate that surface roughness remains substantial after use of this common cleaning routine, and can provide a surface area that is more than 10% but less than 30% larger than anticipated from geometric considerations of a planar surface.  相似文献   

14.
Effect of surface roughness of ground titanium on initial cell adhesion   总被引:4,自引:0,他引:4  
The effect of surface roughness of ground Ti on the initial adhesion of osteoblast-like U-2 OS cells was investigated in this study. Different numbers (#120, #600, and #1500) of SiC sandpaper and two Al2O3 polishing powder (0.3 and 1 microm) were used to prepare the metal specimens with varying degrees of surface roughness. Surface roughness (Ra) was measured by profilometry. Surface topography was observed using an atomic force microscope. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used to measure the optical density (OD) of specimens after 2 h of cell incubation. The OD value was analyzed by one-way ANOVA for analyzing the factor of surface roughness. Crystal violet staining technique was used to characterize the cell spreading. Results showed that the specimen of #1500 Ti (Ra: 0.15 microm) had the highest OD value. The specimens polished with 0.3 and 1 microm Al2O3 powder (Ra: 0.05 and 0.07 microm) exhibited the worst cell adhesion behavior. Contact guidance of cells could be observed on the rougher #600 and #120 specimens (Ra: 0.33 and 1.20 microm). This study concludes that the surface roughness (Ra: 0.05-1.20 microm) of ground Ti has a highly significant influence on the initial adhesion of osteoblast-like U-2 OS cells. The ground Ti with an Ra of 0.15 microm shows the optimal cell adhesion behavior with respect to either the rougher or smoother specimens.  相似文献   

15.
H olah , J.T. & T horpe , R.H. 1990. Cleanability in relation to bacterial retention on unused and abraded domestic sink materials. Journal of Applied Bacteriology 69 , 599–608.
The relative Cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in Cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their Cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor Cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

16.
The rodent whisker system is a major model for understanding neural mechanisms for tactile sensation of surface texture (roughness). Rats discriminate surface texture using the whiskers, and several theories exist for how texture information is physically sensed by the long, moveable macrovibrissae and encoded in spiking of neurons in somatosensory cortex. However, evaluating these theories requires a psychometric curve for texture discrimination, which is lacking. Here we trained rats to discriminate rough vs. fine sandpapers and grooved vs. smooth surfaces. Rats intermixed trials at macrovibrissa contact distance (nose >2 mm from surface) with trials at shorter distance (nose <2 mm from surface). Macrovibrissae were required for distant contact trials, while microvibrissae and non-whisker tactile cues were used for short distance trials. A psychometric curve was measured for macrovibrissa-based sandpaper texture discrimination. Rats discriminated rough P150 from smoother P180, P280, and P400 sandpaper (100, 82, 52, and 35 μm mean grit size, respectively). Use of olfactory, visual, and auditory cues was ruled out. This is the highest reported resolution for rodent texture discrimination, and constrains models of neural coding of texture information.  相似文献   

17.
A polymer molecule (represented by a statistical chain) end-grafted to a topologically rough surface was studied by static MC simulations. A modified self-avoiding walk on a cubic lattice was used to model the polymer in an athermal solution. Different statistical models of surface roughness were applied. Conformational entropies of chains attached to uncorrelated Gaussian, Brownian, and fractional Brownian surfaces were calculated. Results were compared with the predictions of a simple analytical model of a macromolecule end-grafted to a fractal surface.
Figure
Visualization of SAW generated by the (023) algorithm on a 3D cubic lattice  相似文献   

18.
Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processingtechnology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smoothsurfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanicalproperties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated bylaser multiple processing were compared with those of the samples without LSP The results show that the mechanical propertiesof these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP Themechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations betweenhardness, comnressive residual stress and roughness were also presented.  相似文献   

19.
Adherence to a stainless steel surface selected isolates of Listeria monocytogenes with enhanced surface colonization abilities and a change in phenotype from the common smooth colony morphology to a succession of rough colony morphotypes. Growth in broth culture of the best-adapted, surface-colonizing rough colony morphotype gave a smooth colony revertant. Comparative analysis revealed that the smooth and rough variants had similar phenotypic and biochemical characteristics (e.g., identical growth rates and tolerances to antibiotics and environmental stressors). Rough colony isolates, however, failed to coordinate motility or induce autolysis. The defect in autolysis of rough colony isolates, which involved impaired cellular localization of several peptidoglycan-degrading enzymes, including cell wall hydrolase A (CwhA), suggested a link to a secretory pathway defect. The genetic basis for the impairment was studied at the level of the accessory secretory pathway component SecA2. DNA sequencing of the secA2 gene in smooth and rough colony isolates found no mutations in the coding or promoter regions. Analysis of SecA2 expression with an integrated secA2-FLAG tag construct found the protein to be upregulated in the rough and revertant backgrounds compared to the parental smooth colony isolate. A compensatory mechanism involving the SecA2 secretion pathway components is postulated to control smooth to rough interconversion of L. monocytogenes. Such phenotypic variation may enhance the ability of this opportunistic pathogen to colonize environments as diverse as processing surfaces, food products, and animal hosts.  相似文献   

20.
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号