首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terrestrial blue-green algae Scytonema millei, Phormidium bohneri and Lyngbya mesotricha survived to 100 % at atmospheric temperatures of 5-36 degrees C and relative humidity 55-100 % in rainy, winter and spring seasons but the survival was 15-25 % in summer when atmospheric temperature reached 48 degrees C and relative humidity was < or =23 %. Microcoleus chthonoplastes maximum survival was =80 % in rainy season followed by a decrease to =1/2 and 1/4 level in winter and spring, respectively; it disappeared in summer but a few cells and/or trichomes enclosed within sheath may be surviving sticking to soil, not evident microscopically, since the population reappeared at the same place with the onset of rain. Terrestrial green alga Rhizoclonium crassipellitum survived only in spring and died at the onset of summer without forming any dormant cell and/or reproductive structure. Only P. bohneri survived better and longer under submerged conditions in liquid medium than air-exposed on moist soil surface in the culture chamber, while the other algae fared almost equally or slightly better air-exposed on moist soil surface (or even on 2 % agarized medium) than when suspended in liquid medium, indicating that air exposure rather than submerged conditions was needed for most of the terrestrial algae to survive. Water stress imposed on growing algae either on high-agar-solid media or in 0.2-0.6 mol/L NaCl liquid media in the culture chamber reduced vegetative survival in all; it resulted in death without any dormant cell remaining. When stored in desiccators over fused CaCl2, M. chthonoplastes died within 1/2 month, R. crassipellitum and L. mesotricha within 1 month, P. bohneri within 1/2 month, and S. millei not even within 1 1/2 month, indicating their survival pattern against atmospheric dryness to be wide; it also explained the M. chthonoplastes absence in summer and S. millei presence throughout the year. At increased atmospheric humidity the desiccation-sensitive algae (e.g., M. chthonoplastes) survived better than a desiccation-resistant alga (here S. millei). All algae survived considerable darkness (S. millei > 1 1/2 month; P. bohneri, M. chthonoplastes and R. crassipellitum >1 month, and L. mesotricha >1/2 month), and low light intensity of 2 and 10 micromol m(-2)s(-1) which explains their prolific growth in shady places. All algae were differently sensitive to wet heat (45 degrees C for 5-40 min) and to UV shock (0.96-3.84 kJ/m2).  相似文献   

2.
The mere vegetative survival was not sufficient but suitable growth conditions were required for akinete formation to occur in the blue-green algaeAnabœna iyengarii, Westiellopsis prolifica, Nostochopsis lobatus and in the green algaPithophora oedogonia. In all algae, akinetes were neither formed nor germinated in darkness, and while dim light of 300 lx was sufficient for most of akinetes to germinate and also to maintain vegetative survival, it was not adequate for optinum akinete formation. Although akinetes of all algae could germinate at 35°C, both the vegetative survival and akinete formation were markedly suppressed at this temperature. Heat or UV shock of any level, whether ineffective or effecting vegetative survival, did not promote akinete formation or germination in any alga tested. Akinetes of all algae under study were relatively tolerant to heat and also to some extent to UV. Both wet and dried akinetes of all algae were equally UV tolerant. In all algae, the viability of both wet and dried akinetes decreased more or less equally with storage time, but the decrease was more drastic when storage temperature was progressively lowered from 20 to 0°C. Hence the akinetes can tolerate dryness but not frost.  相似文献   

3.
Almost all dried vegetative trichomes ofAnabaena iyengarii, Westiellopsis prolifica andNostochopsis lobatus died within 1 h, while those ofOscillatoria acuminata retained viability to some extent for 1 d under similar storage conditions. The viability of dried vegetative trichomes ofO. acuminata decreased about equally on storage at 20 degrees C in the light or in the dark, but dropped rapidly at 12 and 0 degrees C in the dark. Vegetative trichomes ofA. iyengarii, N. lobatus andW. prolifica were more sensitive to frost than those ofO. acuminata, and this correlated with their low resistance to desiccation because both types of exposure involved osmotic stress. Both dried and wet akinetes ofA. iyengarii, W. prolifica andN. lobatus were about equally viable when stored at 20 degrees C in the light or the dark or at 12 and 0 degrees C in the dark, but their germination ability decreased on storage at 0 degrees C. The water stress imposed on growing vegetative trichomes either in high-agar media or in NaCl-supplemented liquid media reduced the survival ofO. acuminata trichomes, decreased or totally suppressed akinete and heterocyst formation and akinete germination inA. iyengarii, W. prolifica andN. lobatus. The sensitivity decreased in the sequenceA. iyengarii 相似文献   

4.
Tribonema bombycinum (Xanthophyceae), was examined. T. bombycinum shifted from vegetative cells to akinetes with starving by a prolonged batch culture, by culture with a diluted medium, or by culture with a single nutrient-deficient medium. In addition, akinetes developed by desiccation, but cold treatment at 4 C did not facilitate akinete formation. During starving, the vegetative cells, which had a large central vacuole in the protoplasm and thin cell walls, finally changed to akinetes, which had many small vacuoles and oil droplets in the protoplasm and thick cell walls. During akinete formation by starving, the freezing tolerance (LT50) increased gradually from −3 C in vegetative cells to far below −30 C in akinetes. When vegetative cells were subjected to equilibrium freezing, their size shrank greatly and aparticulate domains accompanied by fracture-jump lesions developed in the plasma membranes. Akinetes subjected to equilibrium freezing showed little shrinkage, and freezing-induced ultrastructural changes did not occur in the plasma membranes. The morphological changes in the process of akinete formation and the responses to equilibrium freezing resembled those of cold-acclimated terrestrial plants. Received 24 November 1998/ Accepted in revised form 1 February 1999  相似文献   

5.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

6.
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction.  相似文献   

7.
8.
Differentiation of akinetes was investigated in the filamentous cyanobacterium Anabaena azollae Stras. In this organism all pre-existing vegetative cells are capable of developing into akinetes. Standard sporulation medium (SSM) was used to synchronously induce the formation of akinetes, while cultures in Allen and Arnon (AA/8) medium were used as controls.This paper describes the changes in photosynthetic pigments and total soluble proteins in these cultures over a 25-day period encompassing akinete differentiation. Heterocyst frequencies and nitrogenase activity were also monitored during the same period in both media. SDS-PAGE results indicated that specific proteins were synthesized in a manner correlated with akinete differentiation. The results demonstrate that in cultures undergoing akinete development, some of the photosynthetic pigments are maintained, nitrogen-fixation and heterocyst differentiation are suppressed, and the cells synthesize a variety of specific proteins.  相似文献   

9.
Akinetes, differentiated resting cells produced by many species of filamentous, heterocystous cyanobacteria, enable the organism to survive adverse conditions, such as cold winters and dry seasons, and to maintain germination capabilities until the onset of suitable conditions for vegetative growth. Mature akinetes maintain a limited level of metabolic activities, including photosynthesis. In the present study, we have characterized changes in the photosynthetic apparatus of vegetative cells and akinetes of the cyanobacterium Aphanizomenon ovalisporum Forti (Nostocales) during their development and maturation. Photosynthetic variable fluorescence was measured by microscope‐PAM (pulse‐amplitude‐modulated) fluorometry, and the fundamental composition of the photosynthetic apparatus was evaluated by fluorescence and immunological techniques. Vegetative cells and akinetes from samples of Aphanizomenon trichomes from akinete‐induced cultures at various ages demonstrated a gradual reduction, with age, in the maximal photosynthetic quantum yield in both cell types. However, the maximal quantum yield of akinetes declined slightly faster than that of their adjacent vegetative cells. Mature akinetes isolated from 6‐ to 8‐week‐old akinete‐induced cultures maintained only residual photosynthetic activity, as indicated by very low values of maximal photosynthetic quantum yields. Based on 77 K fluorescence emission data and immunodetection of PSI and PSII polypeptides, we concluded that the ratio of PSI to PSII reaction centers in mature akinetes is slightly higher than the ratio estimated for exponentially grown vegetative cells. Furthermore, the cellular abundance of these protein complexes substantially increased in akinetes relative to exponentially grown vegetative cells, presumably due to considerable increase in the biovolume of akinetes.  相似文献   

10.
Three lines of evidence established conclusively that phosphorus limitation triggered akinetes to differentiate in Anabaena circinalis Rabenhorst. First, akinetes differentiated when phosphorus was limited, but not when nitrogen, inorganic carbon, iron, trace elements, or light were limited, or when dissolved oxygen concentration was increased. In the phosphorus limitation experiment, akinetes appeared first in the 0 mg P-L?1 cultures, and the higher the initial concentration of phosphorus was, the longer it took for akinetes to differentiate. Second, akinete differentiation commenced when Qp fell to the same critical concentration in all cultures. The critical Qp for akinete differentiation in A. circinalis was 0.3-0.45 pg P·cell?1, and there was no significant difference between cultures grown with 0.6, 0.2, 0.06, or 0 mg P · L?1 (F= 5.48, of = 3, P > 0.05). Similarly, there were no significant differences between P cultures in internal cellular soluble reactive phosphorus (SRP) concentration (F= 0.63, df = 3, P > 0.05) or external SRP per cell in the medium (F= 5.16, df= 3, P > 0.05) when akinete differentiation commenced. Both were between 0.01 and 0.07 pg SRP-cell?1. A thorough literature search indicates that this information has not been reported previously. The third line of evidence came from electron micrographs, which illustrated that polyphosphate was present in trichomes prior to akinete differentiation but was absent in trichomes with akinetes indicating that phosphorus reserves were depleted when akinetes differentiated. Lipid globules (carbon reserve) and cyanophycin granules (nitrogen reserve) increased in number in trichomes with akinetes, compared to trichomes without akinetes. Thus, the ratio of internal P:C:N was different in trichomes with akinetes compared to trichomes without akinetes and may be important in activating akinete-differentiating genes.  相似文献   

11.
All dried vegetative cells ofPithophora œdogonia died within 1 h, while those ofCladophora glomerata andRhizoclonium hieroglyphicum retain viability to some extent for 1 and 8 d, respectively, under similar storage conditions. The viability of dried vegetative cells of eitherC. glomerata orR. hieroglyphicum decreased more or less equally when stored either at 20 °C. in light or dark or at 12 °C in dark, but was lost rapidly and drastically when stored at 0 °C in dark. Both dried and wet akinetes ofP. œdogonia were equally more viable when stored at 20 °C in dark than in light, but they lost germination ability when stored either at 12 or 0 °C in dark; this might be either due to loss of viability or dormancy induction at low temperatures. The water stress imposed by growing vegetative filaments either on highly agarized media, in NaCl-supplemented liquid media or in media undergoing progressive air-drying to complete dryness did not induce, but reduced akinete formation inP. œdogonia, decreased zoosporangium formation inC. glomerata andR. hieroglyphicum, decreased or totally suppressed akinete germination inP. œdogonia and zoospore germination inC. glomerata andR. hieroglyphicum. Akinetes ofP. œdogonia formed under water stress were equally viable, while zoosporangia ofC. glomerata andR. hieroglyphicum formed under water stress were comparatively less viable than those formed without any water stress. Akinete germination inP. œdogonia and zoospore germination inC. glomerata andR. hieroglyphicum were comparatively more sensitive to water stress than the formation of akinetes and zoosporangia. The akinete germination inP. œdogonia was more sensitive to water stress than zoospore germination inC. glomerata andR. hieroglyphicum and it might be either due to their large size, thick wall or dense content.  相似文献   

12.
Nostoc sp. VICCR1-1 was induced in order to form akinetes on the basis of nutrient modification. Phosphorus and iron were found to be the critical for akinete differentiation, especially when both elements were omitted. The number of akinete cells increased up to 20% when compared with culturing in BG110 medium (without N source). In addition, CaCl2 played a role in heterocyst differentiation, and was able to induce heterocyst ranging between 30% and 46%. In order to prepare akinetes as inoculum, the dried form of akinetes was prepared by mixing it with montmorillonite clay. The inoculum with the amount of 2.8 × 106 cells m−2 was applied to rice (Oryza sativa) fields. After harvesting, the grain yields from chemical N fertilizer, vegetative cells, and akinete inoculum treatments were not significantly different. To monitor the persistence of Nostoc sp. VICCR1-1 after harvesting, the most probable number-denaturing gradient gel electrophoresis technique using 16S rRNA gene was employed. The results indicated that the remaining population is at 2.5 × 105 and 1.62 × 106 cells m−2 in treatments supplied with vegetative cells and akinete inocula, respectively. Akinete induction might be one of the appropriate approaches for producing cyanobacterial inoculum.  相似文献   

13.
2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step toward understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme : vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased threefold in cells starved of nitrogen but returned to levels consistent with vegetative cells within 2 weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se . Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosynthesis in N.   punctiforme .  相似文献   

14.
Seasonal dynamics of Anabaena flos-aquae (Lyngb.) Breb., including vegetative cells, akinetes and akinete envelopes, in bottom sediments and water column at both littoral and deeper central stations of a small Siberian reservoir was studied. Two types of akinetes were observed: in the first half of summer Anabaena formed akinetes, which served for vegetative reproduction and germinated in water column soon after differentiation, while in the second half of summer the akinetes produced served as a resting stages, which were deposited to bottom sediments. Canonical correlation analyses revealed that decrease of water temperature was the main environmental factor that stimulated the akinete formation. In contrast to the general opinion, concentration of inorganic phosphorus slightly, but positively influenced the akinete formation. Thus, akinetes formed in response to the temperature decrease, needs a certain level of this nutrient. At littoral and open-water stations abundance and seasonal dynamics of akinetes in water column and their sinking pattern were very similar. However, seasonal dynamics of abundance of akinetes in sediments in these two reservoir locations differed: whereas the abundance of akinetes in open water increased permanently during the summer, that in the littoral decreased soon after their sedimentation. The cause for decrease in abundance of akinetes in bottom sediments in winter is unknown.  相似文献   

15.
RAI  A. K.; PANDEY  G. P. 《Annals of botany》1981,48(3):361-370
Germination of akinetes of Anabeana vaginicola v. fertilissimaPrasad in response to environmental stress was studied. Additionof nitrate to the medium induced early and maximum germination(96 per cent), whereas less than half of the akinetes germinatedwhen either nitrate or phosphate was omitted from the medium.The pH range over which germination occurred was 7.0–9.0.The desiccated akinetes after rehydration germinated after acertain lag period, depending upon the dehydration state. Thetemperature optimum for germination and vegetative growth wasthe same (25 °C) and germination did not occur at 5 °Cor above 35 °C. The limit of heat shock tolerated was 55°C for 4 min. In addition to white light, only the red partof the visible spectrum induced germination. Ultraviolet radiationreduced germination rate presumably by inducing thymine dimersin DNA. The photoreactivating system (s) in akinetes is certainlynon-photosynthetic. LD50 photon flux densities were 300 Jm–2for akinetes and 240 Jm–2 for vegetative cells. Anabaena vaginicola, blue-green alga, akinete, germination, environmental stress  相似文献   

16.
Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here, we applied a single-cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained, on average, eight genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15-fold higher than that in vegetative cells. On the basis of fluorescence in situ hybridization, with a probe targeting 16S rRNA, and detection with confocal laser scanning microscopy, we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following a long-term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination.  相似文献   

17.
Since akinete germination is triggered by light and the action spectrum for this process has features in common with the spectra of the two photochromic pigments, phycochromes b and d, a search was made for the presence of these phycochromes in akinetes of the blue-green alga. Anabaena variabilis Kützing. Allophycocyanin-B was also looked for, since the action spectrum for akinete germination points to a possible participation of this pigment too. Isoelectric focusing was used for purification of the pigments. The different fractions were investigated for phycochromes b and d by measuring the absorbance difference spectra: for phycochrome b. 500 nm irradiated minus 570 nm irradiated, and for phycochrome d, 650 nm irradiated minus 610 nm irradiated. For determination of allophycocyanin-B. fourth derivative analysis of absorption spectra was made for some of the fractions from the isoelectric focusing column. Phycochrome b was also assayed for by measuring in vivo absorption difference spectra. The assays were positive for all three pigments. The complete photosynthetic pigment systems were also studied by in vivo fluorescence measurements on both akinetes and vegetative cells of Anabaena variabilis. Fluorescence emission and excitation spectra at selected emission wavelengths were measured at room temperature and liquid nitrogen temperature. The energy transfer from phycoerythrocyanin to phycocyanin is very efficient under all conditions, as is the energy transfer from phycocyanin to allophycocyanin at room temperature. At low temperature, however, phycocyanin is partly decoupled from allophycocyanin, particularly in the akinetes; the energy transfer from allophycocyanin to chlorophyll a is less efficient at low temperature in both types of cells, but especially in akinetes. Delayed light emission was measured for both types of cells and found to be very weak in akinetes compared to vegetative cells. From this study it would seem that akinetes lack an active photosystem II, although the 691 nm peak in the 570 nm excited low temperature fluorescence emission spectrum proves the presence of photosystem II chlorophyll, and also its energetic connection to the phycobilisomes.  相似文献   

18.
Physiological control of akinete formation and subsequent germination is likely to be important in understanding and predicting how natural populations of cyanobacteria respond to their environment. While previous research has indicated nutrient limitation may be important in akinete formation new results presented here indicate that in the toxic and bloom-forming species Anabaena circinalis there was a profound effect of spectral quality. Under 40 μmol photons m?2 s?1 photosynthetically active irradiance (PAR) of predominately red irradiance akinete production was maximal at 2.1 × 10?4 akinetes vegetative cell?1 d?1, some 3000 times greater than the 6.5 × 10?8 akinetes vegetative cell?1 d?1 observed under equivalent PAR but predominately blue light. For cells grown under a range of predominantly red, white and green irradiance even short exposures to blue light reduced akinete formation rates by a factor of ten relative to controls, indicating that exposure to blue light inhibits akinete formation. Germination of akinetes was not influenced by the irradiance under which akinetes were formed: 88 ± 4.1% (mean ± 1 S.D.) of akinetes germinated with no evidence of an effect on germination success due to their production under predominately red, white or green irradiance (germination of akinetes produced under blue light was not tested). Spectral quality had a significant impact on both vegetative cell and germling growth rates. The results indicate a significant reduction in the cellular differentiation of A. circinalis vegetative cells into akinetes that is mediated by blue light. In an ecological context the production of akinetes will be greater in environments with less blue light; potentially including those with slower flow, more stratification, less vertical mixing and more turbidity. The resulting spatial pattern of akinete production is likely to influence the location of akinetes in sediments and the development of subsequent blooms from excysting germlings.  相似文献   

19.
Electronmicroscopical investigations of light activated akinetes in different phases before outgrowth of the germinating cell showed two alterations in the akinete envelope, obviously in connection with the germination process. After induction of germination the akinetes show formation of an expanding more or less electron dense layer between the outer cell wall layer (outer membrane, LIV) and the condensed part of the akinete coat (the transformed sheath of the vegetative cell). Between this new formed layer and the mentioned part of the akinete coat thick laminar layers are deposited which contain alternately electron dense and electron transparent strata. The expanding layer is assumed to be a mucous layer which acts as swelling body causing, after bursting of the layered shell, the expulsion of the germinating cell in the manner characteristic for Anabaena variabilis.  相似文献   

20.
The effects of temperature, light intensity and nutrient depletion on akinete formation in seven strains of planktonic Anabaena spp.: A. mucosa TAC426; A. crassa TAC436; A. spiroides TAC443 and TAC444; A. flosaquae TAC446; and A. ucrainica TAC448 and TAC449 were examined. A Marked Pfft of temperature on akinete formation was observed at 40 μmol photons·m?2·sec?1 and nutrient-sufficient conditions. At 20° C, akinetes did not develop in A. mucosa TAC426, A. crassa TAC436, A. spiroides TAC443, A. flos-aquae TAC446, or A. ucrainica TAC449 but were formed at frequencies of a little over 11% (ratio of filaments with akinetes to total filaments) in A. spiroides TAC444 and A. ucrainica TAC448. None of the strains fmd akinetes or heterocysts at 30° C and 35° C. At lower temperature (10° C and 15° C), akinetes developed in all the strains at maximum frequencies of 13.4–77.4% during the late exponential phase or late exponential to stationary phases of growth. With only one exception, low light or nutrient deletion did not lead to the induction of akinete diferentiation at 20° C. Only akinete formation in A. flosaquae TAC446 was induced by nitrogen deletion with a frequency of 12.1%, similar to that induced by low temperature, but the initiation of akinete formation in the strain was delayed compared to treatment with low temperature. These results show that temperature was the most important environmental factor triggering akinete formation in these species. In A. crassa TAC436 and A. spiroides TAC443 and TAC444, akinetes developed during the late exponential growth phase even though heterocysts were formed at a 100% frequency (ratio of filaments with heterocysts to total filaments) throughout the entire growth phase. In A. mucosa TAC426, A. flos-aquae TAC446, and A. ucrainica TAC448 and TAC449, there was a positive correlation between heterocyst and akinete formation, suggesting that the presence of a heterocyst may play a role in akinete formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号