首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. B. Rose  J. Li    R. L. Last 《Genetics》1997,145(1):197-205
Nine blue fluorescent mutants of the flowering plant Arabidopsis thaliana were isolated by genetic selections and fluorescence screens. Each was shown to contain a recessive allele of trp1, a previously described locus that encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase (PAT, called trpD in bacteria). The trp1 mutants consist of two groups, tryptophan auxotrophs and prototrophs, that differ significantly in growth rate, morphology, and fertility. The trp1 alleles cause plants to accumulate varying amounts of blue fluorescent anthranilate compounds, and only the two least severely affected of the prototrophs have any detectable PAT enzyme activity. All four of the trp1 mutations that were sequenced are G to A or C to T transitions that cause an amino acid change, but in only three of these is the affected residue phylogenetically conserved. There is an unusually high degree of sequence divergence in the single-copy gene encoding PAT from the wild-type Columbia and Landsberg erecta ecotypes of Arabidopsis.  相似文献   

2.
3.
To develop the gene targeting system by homologous recombination inArabidopsis thaliana, we constructed two targeting vectors and showed the reliability of the scheme which is based on genetic complementation of phosphoribosylanthranilate transferase (PAT1) gene. ThePAT1 gene, which is essential for tryptophan biosynthesis, was selected as a target gene because the loss of function leads to fluorescence phenotype due to the accumulation of anthranilic acid derivatives. pHS113 containsPAT1 gene surrounding 5′ and 3′ flanking portions, but the most coding region of thePAT1 gene is replaced by the neomycin phosphotransferase gene (NPTII). pHS117 consists of 1.1 kb internal fragment of genomicPAT1 gene following withNPTII gene. In this targeting strategy,Arabidopsis PAT1 gene can be disrupted by single-step of transformation experiment.  相似文献   

4.
Auxotrophic mutants have played an important role in the genetic dissection of biosynthetic pathways in microorganisms. Equivalent mutants have been more difficult to identify in plants. The bio1 auxotroph of Arabidopsis thaliana was shown previously to be defective in the synthesis of the biotin precursor 7,8-diaminopelargonic acid. A second biotin auxotroph of A. thaliana has now been identified. Arrested embryos from this bio2 mutant are defective in the final step of biotin synthesis, the conversion of dethiobiotin to biotin. This enzymatic reaction, catalyzed by the bioB product (biotin synthase) in Escherichia coli, has been studied extensively in plants and bacteria because it involves the unusual addition of sulfur to form a thiophene ring. Three lines of evidence indicate that bio2 is defective in biotin synthase production: mutant embryos are rescued by biotin but not dethiobiotin, the mutant allele maps to the same chromosomal location as the cloned biotin synthase gene, and gel-blot hybridizations and polymerase chain reaction amplifications revealed that homozygous mutant plants contain a deletion spanning the entire BIO2-coding region. Here we describe how the isolation and characterization of this null allele have provided valuable insights into biotin synthesis, auxotrophy, and gene redundancy in plants.  相似文献   

5.
K K Niyogi  R L Last  G R Fink    B Keith 《The Plant cell》1993,5(9):1011-1027
Suppressors of the blue fluorescence phenotype of the Arabidopsis trp1-100 mutant can be used to identify mutations in genes involved in plant tryptophan biosynthesis. Two recessive suppressor mutations define a new gene, TRP4. The trp4 mutant and the trp1-100 mutant are morphologically normal and grow without tryptophan, whereas the trp4; trp1-100 double mutant requires tryptophan for growth. The trp4; trp1-100 double mutant does not segregate at expected frequencies in genetic crosses because of a female-specific defect in transmission of the double mutant genotype, suggesting a role for the tryptophan pathway in female gametophyte development. Genetic and biochemical evidence shows that trp4 mutants are defective in a gene encoding the beta subunit of anthranilate synthase (AS). Arabidopsis AS beta subunit genes were isolated by complementation of an Escherichia coli anthranilate synthase mutation. The trp4 mutation cosegregates with one of the genes, ASB1, located on chromosome 1. Sequence analysis of the ASB1 gene from trp4-1 and trp4-2 plants revealed different single base pair substitutions relative to the wild type. Anthranilate synthase alpha and beta subunit genes are regulated coordinately in response to bacterial pathogen infiltration.  相似文献   

6.
Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant.  相似文献   

7.
Nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster   总被引:9,自引:0,他引:9  
A plasmid library of Acinetobacter calcoaceticus HindIII fragments was constructed, and clones that complemented an Escherichia coli pabA mutant were selected. Plasmids containing a 3.9-kb fragment of A. calcoaceticus DNA that also complemented E. coli trpD and trpC-(trpF+) mutants were obtained. We infer that complementation of E. coli pabA mutants was the result of the expression of the amphibolic anthranilate- synthase/p-aminobenzoate-synthase glutamine-amidotransferase gene and that the plasmid insert carried the entire trpGDC gene cluster. In E. coli minicells, the plasmid insert directed the synthesis of polypeptides of 44,000, 33,000, and 20,000 daltons, molecular masses that are consistent with the reported molecular masses of phosphoribosylanthranilate transferase, indoleglycerol-phosphate synthase, and anthranilate-synthase component II, respectively. A 3,105- bp nucleotide sequence was determined. Comparison of the A. calcoaceticus trpGDC sequences with other known trp gene sequences has allowed insight into (1) the evolution of the amphibolic trpG gene, (2) varied strategies for coordinate expression of trp genes, and (3) mechanisms of gene fusions in the trp operon.   相似文献   

8.
Summary Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5 region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.  相似文献   

9.
TheArabidopsis thaliana biotin auxotrophbio1 was rendered prototrophic by transformation with a chimeric transgene containing theEscherichia coli bioA gene driven by a constitutive promoter. ThebioA gene encodes the biotin biosynthetic enzyme 7,8-diaminopelargonic acid aminotransferase. Unlike the untransformed control plants, transgenic plants expressing the bacterial transgene synthesized biotin and grew to maturity without biotin-deficiency symptoms. These findings demonstrate thatbio1/bio1 mutant plants are defective in the gene encoding 7,8-diaminopelargonic acid aminotransferase.  相似文献   

10.
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker–based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.  相似文献   

11.
Candida glycerinogenes WL2002-5 is an osmotolerant yeast used for the commercial production of glycerol. The TRP1 gene of Candida glycerinogenes (CgTRP1), encoding phosphoribosylanthranilate isomerase (PRAI) was cloned by complementation of the trp1 mutation of Saccharomyces cerevisiae W303-1A. DNA sequence analysis revealed a 735 bp open reading frame (ORF) encoding a polypeptide of 244 amino acids, which shared 32.9 ~ 49.2% amino acid sequence similarity to PRAI proteins from other species of Saccharomycetales. A trp1 auxotrophic mutant of C. glycerinogenes was selected in medium containing 5-fluoroanthranilic acid, and confirmed by functional and sequence analysis. An integrative vector was constructed with the 18S rDNA gene as integration target and CgTRP1 gene as selectable marker. The trp1 mutant of C. glycerinogenes was transformed with integrative vector, transformants were screened by trp1 complementation. Diagnostic PCR show that the plasmid could be integrated in the site of the 18S rDNA gene of C. glycerinogenes.  相似文献   

12.
Light gradients in the soil have largely been overlooked in understanding plant responses to the environment. However, roots contain photoreceptors that may receive ambient light through the soil or piped light through the vascular cylinder. In recent experiments we demonstrated linkages between phototropin-1 photoreceptor production, root growth efficiency, and drought tolerance, suggesting that root plasticity in response to light signals contributes to the ecological niche of A. thaliana. However, the availability of light cues in natural soil environments is poorly understood, raising questions about the relevance of light-mediated root growth for fitness in nature. Additionally, photoreceptor expression is characterized by pleiotropy so unique functions cannot be clearly ascribed to root vs. shoot sensory mechanisms. These considerations show that challenges exist for resolving the contribution of light-sensing by roots to plant adaptation. We suggest that blue-light sensing in roots of A. thaliana provides a model system for addressing these challenges. By calibrating blue light gradients in soils of diverse A. thaliana habitats and comparing fitness of phot1 mutant and wild-type controls when grown in presence or absence of soil light cues, it should be possible to elucidate the ecological significance of light-mediated plasticity in roots.Key Words: phototropin, roots, drought-tolerance, photoreceptors, Arabidopsis thalianaIn plants, the capacity to sense and respond to variation in light quality is exploited in ecological interactions with neighbors,1 in optimizing light interception for photosynthesis,2 and even in collecting heat as a reward for insect pollinators in cold environments.3 Perhaps because the physiological and developmental functions modified by these light responses are readily observed in above ground organs (leaves, stems, flowers, etc.) light sensing and its adaptive significance belowground have largely been ignored. Light gradients underground are commonly considered redundant in information content to gravity, based on the similar directional responses of root growth to the two stimuli. This premise assumes that roots do not respond to light gradients established by vegetative canopies, or to light mosaics created in heterogeneous soils. However, such assumptions are problematic on several grounds—light piping by vascular elements makes the air-soil interface less of a barrier than a filter for light signals,4 even in uniform soil, the attenuation of light with depth informs the root of its position relative to the surface in a way that gravity cannot; and natural selection has favored a role for photo-sensory systems in other underground processes (e.g., phytochrome-mediated seed germination, ref. 1) suggesting that light signals in the soil can provide valuable indicators of environmental conditions for growth and development.Because root growth responds to hormonal and ionic gradients established by signal reception in leaves,5 one might argue that photoreceptors in the roots themselves are redundant or at best, relatively unimportant. Yet photoreceptors provide unique information when deployed in different locations. For example, the quality of light intercepted at the leaf or stem allows for rapid reallocation of resources from root to shoot system in relation to crowding by vertically oriented foliage (e.g., during shade avoidance, ref. 1), but may be less effective at directing responses to soil disturbance, desiccation or rosette density.In new research on the blue light photoreceptor phototropin-1 we show that the abundance of the photoreceptor in roots correlates with enhanced root growth efficiency. Mutants lacking the phot1 protein exhibit comparably random root growth and lower desiccation tolerance, suggesting that natural selection may have acted on root-mediated light sensing to improve drought tolerance in A. thaliana. Demonstrating that plastic responses of roots to soil light stimuli contribute to drought tolerance in the wild will require new research that characterizes underground light environments in natural habitats and measures selection on light-sensing in roots independent of pleiotropic effects on above-ground (leaf and stem) functions. We review our findings on blue-light mediated plasticity in root growth of A. thaliana, and propose that genetic polymorphism in Arabidopsis phototropin-1 provides a model system for addressing the adaptive significance of root photo-sensory systems in nature.Arabidopsis thaliana mutant plants lacking the blue light photoreceptor, phototropin-1, exhibit significantly reduced drought tolerance compared to the wild type background COL- O genotype for the phot1 mutation. Under dry (but not wet) soil conditions, wild type plants grow twice as large as phot1 mutants and plant size is highly correlated with root growth efficiency, the capacity of roots to grow directly away from the soil surface toward a belowground water supply. Using a translationally-fused phot1-gfp (green fluorescent protein) gene-construct to localize protein expression in roots, we found that high root growth efficiency is primarily limited to shallow rooting zones where soil drying is most rapid and phot1 protein most concentrated. This pattern suggests a role of phot1 in promoting efficient root growth by cueing roots to their proximity to the soil surface. However, if this conclusion is correct then blue light must attain sufficient intensity in natural soils to activate root-localized phot1 and pleiotropic effects in the shoot system cannot solely explain the impact of phot1 on drought tolerance.  相似文献   

13.
The production of transgenic plants has contributed greatly to plant research. Previously, an improved method for screening transgenic Arabidopsis thaliana seeds using the FAST (Fluorescence-Accumulating-Seed Technology) method and FAST marker was reported. Arabidopsis seeds containing the FAST marker may be visually screened using a fluorescence stereomicroscope or blue LED handy-type instrument. Although the FAST method was originally designed for Arabidopsis screens, this study endeavors to adapt this method for the screening of other plants. Here, an optimized technology, designated the OsFAST method, is presented as a useful tool for screening transgenic rice seeds. The OsFAST method is based on the expression of the OsFAST-G marker under the control of a seed-embryo-specific promoter, similar to the Arabidopsis FAST-G marker. The OsFAST method provides a simple and non-destructive method for identifying transgenic rice seeds. It is proposed that the FAST method is adaptable to various plant species and will enable a deeper analysis of the floral-dip method.Key words: Oryza sativa, oleosin, seed, green fluorescent protein, transformation, screenable markerThe production of transgenic plants has significantly enhanced many areas of plant science research. Antibiotic/herbicide-resistance genes are traditionally used as screenable markers for the selection of transgenic plants. However, this approach does have disadvantages. First, antibiotics or herbicides occasionally inhibit the growth of transgenic plants, regardless of the incorporation of antibiotic- or herbicide-resistance genes1 into the transgenic plants. Second, the identification of resistant transgenic plants requires that the seed population be sown onto plates containing antibiotics or herbicides. Third, the selection process is slow and labor intensive, often involving the screening of vast numbers of potentially transgenic seeds on selective plates.To overcome these disadvantages, an improved approach for selecting transgenic Arabidopsis thaliana, designated the FAST (Fluorescence-Accumulating-Seed Technology) method, was developed. This method employs the use of a fluorescent protein that is expressed in seeds and used as a visual screenable marker for the identification of transgenic seeds. The seed-specific protein oleosin, a family of oil-body-membrane proteins,2 has an important role as a size regulator of oil bodies.3 AtOLE1, the most abundant oleosin, functions in the freezing tolerance of Arabidopsis seeds.4 A plasmid containing an AtOLE1-GFP fusion gene controlled by the AtOLE1 promoter was constructed and designated the FAST-G (Fluorescence-Accumulating-Seed Technology with OLE1-GFP) marker. Interestingly, Arabidopsis seeds containing the FAST-G marker emitted clear fluorescence under a fluorescence stereomicroscope or blue LED handy-type instrument. The transgenic seeds were visually identified by the seed fluorescence without the use of antibiotics or herbicides, thus indicating that the FAST method offers a nondestructive approach. The FAST marker permits the identification of homozygous seeds among the T2 population with a false discovery rate of less than 1% as a co-dominant screenable marker. In contrast to conventional methods using antibiotics or herbicides, the FAST method reduces the amount of time required to acquire homozygous transgenic plants from 7.5 months to 4 months. The fluorescence of the FAST-G marker was limited to a specific organ (i.e., in seeds) and a specific time (i.e., during dormancy), desirable characteristics of selectable and/or screenable markers. Furthermore, the FAST marker does not require sterile seeding and the handling of large numbers of plants.  相似文献   

14.
In plants, sugars affect growth and development and play an important role in the intricate machinery of signal transduction. Understanding the mechanisms behind the flux of sugar in the plant is of central interest. We recently characterized an Arabidopsis mutant: sweetie, which is defective in the control of growth and development, sterile, shows premature senescence and affects sugar metabolism. Our microarray analysis showed that 15 genes annotated as sugar transporter related proteins were found to be upregulated in sweetie while one sugar transporter gene was found to be downregulated. Most of them are unspecified sugar transporters but four genes have been annotated as monosaccharide transporters and one has been annotated as a disaccharide transporter. Moreover, as computer analyses predicted that SWEETIE might be a membrane protein and might have a function of glycosyl transferase, our data suggest that SWEETIE could be involved in the general control of sugar flux and modulates many important processes such as morphogenesis, flowering, stress responses and senescence.Key words: Arabidopsis thaliana, sweetie mutant, microarray, sugar flux, sugar transport  相似文献   

15.
In plant cells, mitochondria and plastids contain their own genomes derived from the ancestral bacteria endosymbiont. Despite their limited genetic capacity, these multicopy organelle genomes account for a substantial fraction of total cellular DNA, raising the question of whether organelle DNA quantity is controlled spatially or temporally. In this study, we genetically dissected the organelle DNA decrease in pollen, a phenomenon that appears to be common in most angiosperm species. By staining mature pollen grains with fluorescent DNA dye, we screened Arabidopsis thaliana for mutants in which extrachromosomal DNAs had accumulated. Such a recessive mutant, termed defective in pollen organelle DNA degradation1 (dpd1), showing elevated levels of DNAs in both plastids and mitochondria, was isolated and characterized. DPD1 encodes a protein belonging to the exonuclease family, whose homologs appear to be found in angiosperms. Indeed, DPD1 has Mg2+-dependent exonuclease activity when expressed as a fusion protein and when assayed in vitro and is highly active in developing pollen. Consistent with the dpd phenotype, DPD1 is dual-targeted to plastids and mitochondria. Therefore, we provide evidence of active organelle DNA degradation in the angiosperm male gametophyte, primarily independent of maternal inheritance; the biological function of organellar DNA degradation in pollen is currently unclear.  相似文献   

16.
 Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant. Received: 28 May 1996 / Accepted: 19 June 1996  相似文献   

17.
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.  相似文献   

18.
An Agrobacterium tumefaciens—mediated transformation system was developed for Eruca sativa (eruca). Hypocotyl explants were co-cultivated with bacterial cells carrying a plasmid harboring a uidA:nptII fusion gene along a phosphinothricin acetyl transferase (PAT) gene cassette, for a period of 2 days. These were grown on a high cytokinin/auxin medium containing 5.0 mg l?1 6-benzyladenine (BA), 1.0 mg l?1 indole-3-acetic acid (IAA), and 0.1 mg l?1 α-naphthaleneacetic acid (NAA). Explants were then transferred to a lower cytokinin/auxin medium containing 2.0 mg l?1 BA and 0.1 mg l?1 NAA along with 5.0 mg l?1 silver nitrate and 300 mg l?1 Timentin®. Upon transfer to a selection medium containing either 20 mg l?1 kanamycin or 2 mg l?1 L-phosphinothricin (L-ppt), shoot regenerants were observed. Expression of the transgenes in putative transformants was confirmed using a histochemical GUS assay. Presence of the PAT transgene in GUS-positive T0 plants was confirmed by Southern blot analysis. Moreover, spot tests of T1 seedlings were conducted using the L-ppt herbicide. A transformation frequency of 1.1% was obtained with more than 60% of transgenic lines containing single copies of the transgenes.  相似文献   

19.
A microarray analysis of the salt-resistant wheat mutant, RH8706-49, revealed a salt-induced gene containing a conserved DUF581 domain. The gene was cloned and designated as Triticum aestivum salt-related hypothetical protein (TaSRHP) and submitted to GenBank (accession no. GQ476575). Over-expression of TaSRHP in wild-type Arabidopsis thaliana cv. Columbia resulted in enhanced resistance to both salt and drought stresses. The sensitivity of the transgenic A. thaliana to abscisic acid (ABA) was also increased compared to that of wild-type plants. Furthermore, transgenic plants accumulated more K+ and proline and had a higher osmotic potential and lower Na+ content than untransformed plants. Real-time quantitative PCR analysis indicated that expression of TaSRHP was affected by salt, drought, cold, ABA, and other stresses, and expression of other stress-related genes in the transgenic plants differed from those of the control. Results indicate that the wheat TaSRHP gene may enhance the tolerance of plants to multiple abiotic stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号