首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objectives  Indoleamine-2,3-Dioxygenase (IDO) is an immunosuppressive molecule inducible in various cells. In addition to classic IDO (IDO1), a new variant, IDO2, has recently been described. When expressed in dendritic cells (DCs) or cancer cells, IDO was thought to suppress the immune response to tumors. A novel therapeutic approach in cancer envisages inhibition of IDO with 1-methyl-tryptophan (1MT). The levo-isoform (l-1MT) blocks IDO1, whereas dextro-1MT (d-1MT), which is used in clinical trials, inhibits IDO2. Here we analyze IDO2 expression in human cancer cells and the impact of both 1-MT isoforms on IDO activity. Methods  Surgically extirpated human primary tumors as well as human cancer cell lines were tested for IDO1 and IDO2 expression by RT-PCR. IDO1 activity of Hela cells was blocked by transfection with IDO1-specific siRNA and analysed for tryptophan degradation by RP-HPLC. The impact of d-1MT and l-1MT on IDO activity of Hela cells and protein isolates of human colon cancer were studied. Results  Human primary gastric, colon and renal cell carcinomas constitutively expressed both, IDO1 and IDO2 mRNA, whereas cancer cells lines had to be induced to by Interferon-gamma (IFN-γ). Treatment of Hela cells with IDO1-specific siRNA resulted in complete abrogation of tryptophan degradation. Only l-1MT, and not d-1MT, was able to block IDO activity in IFN-γ-treated Hela cells as well as in protein isolates of primary human colon cancer. Conclusions  Although IDO2 is expressed in human tumors, tryptophan degradation is entirely provided by IDO1. Importantly, d-1MT does not inhibit the IDO activity of malignant cells. If ongoing clinical studies show a therapeutic effect of d-1MT, this cannot be attributed to inhibition of IDO in tumor cells.  相似文献   

2.
3.
Regulatory role of metallothionein in NF-kappaB activation.   总被引:5,自引:0,他引:5  
A Sakurai  S Hara  N Okano  Y Kondo  J Inoue  N Imura 《FEBS letters》1999,455(1-2):55-58
  相似文献   

4.
Matrix metalloproteinases (MMPs) remodel tumor microenvironment and promote cancer metastasis. Among the MMP family proteases, the proteolytic activity of the pro-tumorigenic and pro-metastatic membrane-type 1 (MT1)-MMP constitutes a promising and targetable biomarker of aggressive cancer tumors. In this study, we systematically developed and characterized several highly sensitive and specific biosensors based on fluorescence resonant energy transfer (FRET), for visualizing MT1-MMP activity in live cells. The sensitivity of the AHLR-MT1-MMP biosensor was the highest and five times that of a reported version. Hence, the AHLR biosensor was employed to quantitatively profile the MT1-MMP activity in multiple breast cancer cell lines, and to visualize the spatiotemporal MT1-MMP activity simultaneously with the underlying collagen matrix at the single cell level. We detected a significantly higher level of MT1-MMP activity in invasive cancer cells than those in benign or non-invasive cells. Our results further show that the high MT1-MMP activity was stimulated by the adhesion of invasive cancer cells onto the extracellular matrix, which is precisely correlated with the cell’s ability to degrade the collagen matrix. Thus, we systematically optimized a FRET-based biosensor, which provides a powerful tool to detect the pro-invasive MT1-MMP activity at single cell levels. This readout can be applied to profile the invasiveness of single cells from clinical samples, and to serve as an indicator for screening anti-cancer inhibitors.  相似文献   

5.
Polyomavirus middle T antigen (MT) is phosphorylated on serine residues. Partial proteolytic mapping and Edman degradation identified serine 257 as a major site of phosphorylation. This was confirmed by site-directed mutagenesis. Isoelectric focusing of immunoprecipitated MT from transfected 293T cells showed that phosphorylation on wild-type MT occurred at near molar stoichiometry at S257. MT was previously shown to be associated with 14-3-3 proteins, which have been connected to cell cycle regulation and signaling. The association of 14-3-3 proteins with MT depended on the serine 257 phosphorylation site. This has been demonstrated by comparing wild-type and S257A mutant MTs expressed with transfected 293T cells or with Sf9 cells infected with recombinant baculoviruses. The 257 site is not critical for transformation of fibroblasts in vitro, since S257A and S257C mutant MTs retained the ability to form foci or colonies in agar. The tumor profile of a virus expressing S257C MT showed a striking deficiency in the induction of salivary gland tumors. The basis for this defect is uncertain. However, differences in activity for the wild type and mutant MT lacking the 14-3-3 binding site have been observed in transient reporter assays.  相似文献   

6.
M Tanaka  R Ikebe  M Matsuura    M Ikebe 《The EMBO journal》1995,14(12):2839-2846
It has been hypothesized that basic residues in the autoinhibitory region of myosin light chain (MLC) kinase, which resemble the substrate sequence, interact with the catalytic core via charge interaction and thus inhibit the kinase activity (pseudosubstrate inhibitory hypothesis). In the present study, we produced seven MLC kinase mutants in which the residues in the autoinhibitory region are deleted to various extents, and determined the residues crucial for the autoinhibition of the kinase activity. The activities of MT799 (1-799) and MT796 (1-796) were completely inhibited, whereas MT793 (1-793), MT791 (1-791), MT787 (1-787) and MT783 (1-783) were constitutively active. The tryptic proteolysis of MT799 and MT796 activated the kinase activity, presumably due to the removal of the residues essential for autoinhibition. The mutants which showed the constitutively active kinase activity were not further activated by tryptic proteolysis, suggesting that the residues crucial for autoinhibition were already deleted. On the other hand, MT795 (1-795) was partially constitutively active (33% of maximum activity) and the tryptic proteolysis further activated the enzyme activity, suggesting that MT795 loses part of the residues essential for autoinhibition. The substitution of the residues Tyr794-Met795 but not Lys793 of untruncated MLC kinase significantly increased the Ca2+/calmodulin-independent kinase activity. These results clearly show that the region Tyr794-Met795-Ala796 is critical for autoinhibition. This study shows that the pseudosubstrate sequence is not critical for the autoinhibition mechanism of MLC kinase.  相似文献   

7.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed in most tumors and is believed to play a key role in the development, invasion and metastasis of tumors. There is an urgent need to develop a simple method to detect the MT1-MMP expression level on cells. In this current study, we demonstrated a red emission Au cluster probes with the specific targeting of MT1-MMP on human dopaminergic neuroblastoma (SH-SY5Y) cells. More importantly, utilizing the intrinsic enzyme-like activity of the Au cluster probes, the expression level of MT1-MMP on the SH-SY5Y cells could be assessed by the naked eye without cell lysis and protein extraction process. Furthermore, SH-SY5Y, human breast cancer (MCF-7), and human bronchial epithelial (16-HBE) cell lines with different MT1-MMP expression level could be distinguished using the Au cluster probes by the naked eye. Meanwhile, fluorescence intensity and Au count determined by inductively coupled plasma mass spectrometry (ICP-MS) were used to verify the feasibility of this simple analytical method. Our proposed method is rapid, convenient, and accurate and could be assessed by the naked eye. This visual assessment method of tumor-associated proteins has immense implications in sorting tumor cells.  相似文献   

8.
Metallothionein (MT) has been assigned a role in intestinal Zn absorption and secretion. The influence of MT was investigated in isolated segments of the small intestine from mice lacking the expression of MT I and II genes (MT−/−). To measure Zn absorption, washed 10- to 12-cm segments of the proximal and distal small intestine of MT−/− and control MT+/+ mice were filled with 65Zn as ZnSO4 (10 μg/mL), and the amount of 65Zn appearing in the external buffer was measured over 4 h. To measure Zn secretion, the same procedure was followed using everted gut segments. The 65Zn absorption from the small intestine was significantly greater in MT−/− mice, but only in the absence of albumin. In the proximal small intestine, the inclusion of 2% albumin in the external buffer significantly increased Zn absorption from 6.8% (no albumin) to 13.2% (with albumin) for MT−/−, and from 4.9% (no albumin) to 14.2% (with albumin) for MT+/+. In the distal segment, the respective values, with and without albumin respectively were 9.5% and 15.1% for MT−/− mice and 4.3% and 16.1% for MT+/+ mice. Regarding 65Zn secretion, there was no difference between MT+/+ and MT−/− in either segment. However, the rate of secretion was higher in the proximal small intestine for both genotypes. Although it can be demonstrated that MT limits Zn absorption under controlled conditions in vitro, the ability of albumin to overcome this effect emphasizes the importance of circulating ligands in Zn transport.  相似文献   

9.
10.
Metallothioneins in human tumors and potential roles in carcinogenesis   总被引:19,自引:0,他引:19  
  相似文献   

11.
The matrix metalloproteinases (MMPs), in particular, membrane type 1 MMP (MT1-MMP), are increased in the context of myocardial ischemia and reperfusion (I/R) and likely contribute to myocardial dysfunction. One potential upstream induction mechanism for MT1-MMP is endothelin (ET) release and subsequent protein kinase C (PKC) activation. Modulation of ET and PKC signaling with respect to MT1-MMP activity with I/R has yet to be explored. Accordingly, this study examined in vivo MT1-MMP activation during I/R following modification of ET signaling and PKC activation. With the use of a novel fluorogenic microdialysis system, myocardial interstitial MT1-MMP activity was measured in pigs (30 kg; n = 9) during I/R (90 min I/120 min R). Local ET(A) receptor antagonism (BQ-123, 1 microM) and PKC inhibition (chelerythrine, 1 microM) were performed in parallel microdialysis probes. MT1-MMP activity was increased during I/R by 122 +/- 10% (P < 0.05) and was unchanged from baseline with ET antagonism and/or PKC inhibition. Selective PKC isoform induction occurred such that PKC-betaII increased by 198 +/- 31% (P < 0.05). MT1-MMP phosphothreonine, a putative PKC phosphorylation site, was increased by 121 +/- 8% (P < 0.05) in the I/R region. These studies demonstrate for the first time that increased interstitial MT1-MMP activity during I/R is a result of the ET/PKC pathway and may be due to enhanced phosphorylation of MT1-MMP. These findings identify multiple potential targets for modulating a local proteolytic pathway operative during I/R.  相似文献   

12.
A C-terminal truncated form of membrane-type 4 matrix metalloproteinase (MT4-MMP; MMP 17), lacking the hemopexin-like and transmembrane domain, was expressed in Escherichia coli. The catalytic domain was produced by tryptic activation of the recombinant proenzyme and proved to be catalytically active towards the fluorogenic substrate for matrix metalloproteinases (7-methoxycoumarin-4-yl) acetyl-Pro-Leu-Gly-Leu(3-(2,4-dinitrophenyl)-L-2,3-diaminopro-p ionyl)-Ala-Arg-NH2. In contrast to the other three MT-MMPs (MT1-, MT2-, and MT3-MMP), the catalytic domain of MT4-MMP does not activate progelatinase A, nor does it hydrolyze one of the offered extracellular matrix (ECM) proteins, such as collagen types I, II, III, IV, and V, gelatin, fibronectin, laminin or decorin. TIMP-1, a poor inhibitor of MT1-, MT2- and MT3-MMP, suppresses MT4-MMP activity effectively. The progelatinase A/TIMP-2 complex that usually reacts like TIMP-2 also inhibits MT4-MMP. TIMP-2, a strong inhibitor of other MT-MMPS, inhibits MT4-MMP at low concentrations. With increasing TIMP-2 concentration, however, activity passes through a minimum and then increases until at high TIMP-2 concentration the activity is the same as in the absence of TIMP-2. TIMP-1 or the progelatinase A/TIMP-2 complex do not prevent reactivation of MT4-MMP catalytic domain at high TIMP-2 concentrations.  相似文献   

13.
MT6-MMP/MMP-25 is the latest member of the membrane-type matrix metalloproteinase (MT-MMP) subgroup in the MMP family and is expressed in neutrophils and some brain tumors. The proteolytic activity of MT6-MMP has been studied using recombinant catalytic fragments and shown to degrade several components of the extracellular matrix. However, the activity is possibly modulated further by the C-terminal hemopexin-like domain, because some MMPs are known to interact with other proteins through this domain. To explore the possible function of this domain, we purified a recombinant MT6-MMP with the hemopexin-like domain as a soluble form using a Madin-Darby canine kidney cell line as a producer. Mature and soluble MT6-MMP processed at the furin motif was purified as a 45-kDa protein together with a 46-kDa protein having a single cleavage in the hemopexin-like domain. Interestingly, 73- and 70-kDa proteins were co-purified with the soluble MT6-MMP by forming stable complexes. They were identified as clusterin, a major component of serum, by N-terminal amino acid sequencing. MT1-MMP that also has a hemopexin-like domain did not form a complex with clusterin. MT6-MMP forming a complex with clusterin was detected in human neutrophils as well. The enzyme activity of the soluble MT6-MMP was inactive in the clusterin complex. Purified clusterin was inhibitory against the activity of soluble MT6-MMP. On the other hand, it had no effect on the activities of MMP-2 and soluble MT1-MMP. Because clusterin is an abundant protein in the body fluid in tissues, it may act as a negative regulator of MT6-MMP in vivo.  相似文献   

14.
We have studied a kindred in which two parts of siblings, maternal first cousins, have a form of "minimal" androgen insensitivity that permits morphogenesis of unambiguous male external genitalia, but interferes with normal virilization at puberty. All four had gynecomastia that required reductive surgery. Apart from this common phenotype, they varied considerably in the temporal and regional aspects of their subvirilization and appreciably in their androgenic responsiveness to pharmacological doses of testosterone. The cultured genital skin fibroblasts from one set of siblings have an androgen-receptor activity with the following properties: (1) a normal maximum-binding capacity (Bmax) with 5 alpha-dihydrotestosterone (DHT), or the synthetic androgen, methyltrienolone (MT; R1881) as ligand; (2) a higher than normal apparent equilibrium dissociation constant (Kd) for DHT (0.77 nM) but not for MT; and (3) an elevated dissociation rate (k) of DHT-receptor (0.013 min-1, 37 degrees C), but not MT-receptor, complexes within intact cells. In addition, prolonged incubation with MT, but not DHT, augments the specific androgen-binding activity of the mutant cells as much as that of the controls. Normal cells yield lower values of apparent Kd for DHT (0.1-0.3 nM) after 2- than after 0.5-hr incubation (0.3-1.8 nM), and 1-hr values are intermediate. This occurs despite concurrent catabolic consumption of DHT from the medium and is considered to reflect transformation of initial, low-affinity DHT-receptor complexes to subsequent, higher-affinity states by a process that depends on time and initial ligand concentration. The mutant complexes described here can readily attain the highest state of affinity with MT, but have an impeded, variably expressed ability to do so with DHT. These findings suggest that a structural mutation at the X-linked locus that encodes the androgen-receptor protein is responsible for its androgen-selective dysfunction. Synthetic, nonhepatotoxic androgens, with corrective effects in vitro comparable to those of MT, may be therapeutically useful for these subjects.  相似文献   

15.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a collagenolytic enzyme that has been implicated in normal development and in pathological processes such as cancer metastasis. The activity of MT1-MMP is regulated extensively at the post-translational level, and the current data support the hypothesis that MT1-MMP activity is modulated by glycosylation. Enzymatic deglycosylation, site-directed mutagenesis, and lectin precipitation assays were used to demonstrate that MT1-MMP contains O-linked complex carbohydrates on the Thr(291), Thr(299), Thr(300), and/or Ser(301) residues in the proline-rich linker region. MT1-MMP glycoforms were detected in human cancer cell lines, suggesting that MT1-MMP activity may be regulated by differential glycosylation in vivo. Although the autolytic processing and interstitial collagenase activity of MT1-MMP were not impaired in glycosylation-deficient mutants, cell surface MT1-MMP-catalyzed activation of pro-matrix metalloproteinase-2 (proMMP-2) required proper glycosylation of MT1-MMP. The inability of carbohydrate-free MT1-MMP to activate proMMP-2 was not a result of defective MT1-MMP zymogen activation, aberrant protein stability, or inability of the mature enzyme to oligomerize. Rather, our data support a mechanism whereby glycosylation affects the recruitment of tissue inhibitor of metalloproteinases-2 (TIMP-2) to the cell surface, resulting in defective formation of the MT1-MMP/TIMP-2/proMMP-2 trimeric activation complex. These data provide evidence for an additional mechanism for post-translational control of MT1-MMP activity and suggest that glycosylation of MT1-MMP may regulate its substrate targeting.  相似文献   

16.
Neoplasms have developed numerous strategies to protect themselves against the host immune system. Membrane type-1 matrix metalloproteinase (MT1-MMP) is strongly associated with many cancer types and is up-regulated in the aggressive, metastatic neoplasms. During the past few years, there has been an increasing appreciation of the important, albeit incompletely understood, role of MT1-MMP in cancer. We have discovered, using cell-free and cell-based assays in vitro, that MT1-MMP proteolysis specifically targets C3b, an essential component of the complement propagation pathway. MT1-MMP proteolysis liberates the deposited C3 activation fragments from the cell surface. The shedding of these cell-deposited opsonins by MT1-MMP inhibits the complement cascade and protects breast carcinoma MCF7 cells from direct complement-mediated injury in the in vitro tests. The functional link associating MT1-MMP with the host immune system, heretofore unrecognized, may empower tumors with an escape mechanism that contributes to the protection against the host anti-tumor immunity as well as to the survival of invading and metastatic malignant cells in the bloodstream.  相似文献   

17.
Mammalian metallothioneins (MT) have been reported to scavenge free radicals. There is no experimental evidence to show that fish MT has a similar property. In the present study cadmium-induced MT (Cd-MT) from the liver of an Indian freshwater fish Channa punctata Bloch was investigated for its free radical scavenging activity using three different in vitro assays. Exposure to cadmium chloride (0.2 mg/kg body weight; three doses on alternate days) resulted in a marked induction of Cd-MT in liver. Only a single isoform of Cd-MT was found to be induced. Molecular weight of Cd-MT was found to be 14 kDa as deduced by SDS-PAGE analysis. The purified Cd-MT effectively scavenged the following free radicals: superoxide radical (O2*-), 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS*+) and 1,1-diphenyl-picrylhydrazyl radical (DPPH*). The radical scavenging effect was found to be concentration-dependent. Also, the purified MT exhibited an inhibitory effect on ferric nitrilotriacetate (Fe-NTA) induced oxidative DNA damage in vitro. The cysteine residues of MT are proposed to be the main candidate for its radical scavenging activity. Findings of the present study strongly suggest a free radical scavenging role for fish MT. Present study adds to the little existing knowledge about fish MT and its possible biological functions.  相似文献   

18.
Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.  相似文献   

19.
Oleanolic acid (OA), a pentacyclic triterpene acid, has been reported to possess inducing activity of hepatic metallothionein (MT). However, the mechanism underlying its effects is unknown. This study investigated the effects of OA on the regulation of MT expression in an in vitro model. OA that was added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels increased markedly when the Hepa-1c1c7 cells were cultured with the OA-treated conditioned media from the RAW 264.7 cells. Co-treating the RAW 264.7 cells with OA and pentoxifylline, a TNF-alpha synthesis inhibitor, resulted in a decrease in the effects of OA on the MT induction. In the OA-exposed RAW 264.7 cell cultures, production and mRNA levels of TNF-alpha and IL-6 were increased. However, the MT induction activity was inhibited when antibodies to TNF-alpha and/or IL-6 were added to the OA-treated conditioned media from the RAW 264.7 cells. These results suggest that the up-regulation of MT expression by OA was mediated by the TNF-alpha and IL-6 released from UA-activated macrophages.  相似文献   

20.

Background

Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models.

Methodology/Principal Finding

Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c–VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein.

Significance

Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号