首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Most tissues display several features of cellular polarization. Besides the ubiquitous epithelial polarization in the Apical–Basal (A/B) axis, many epithelia (and associated organs) display a Planar Cell Polarization (PCP). Recently, a crosstalk between the PCP and A/B polarity determinants has been suggested, i.e. the activity or stability of the PCP factor Frizzled is regulated by the A/B determinants aPKC and Bazooka in the Drosophila eye. We have systematically investigated genetic and physical interactions between the Drosophila A/B factors and the core PCP component Strabismus (Stbm)/Van Gogh (Vang). The A/B determinant Scribble was found to interact both genetically and physically with Stbm/Vang. We demonstrate that Scribble binds Stbm/Vang through its PDZ domain 3 and that it cooperates with Stbm/Vang in PCP establishment. Our data indicate that Scribble, in addition to its role in A/B polarity, has a distinct requirement in PCP establishment in the Drosophila eye and wing. We define a scribble allele that is largely PCP specific. Our data show that Scribble is part of the Stbm/Vang PCP complex and further suggest that it might act as an effector of Stbm/Vang during PCP establishment.  相似文献   

2.
Schweisguth F 《Cell》2005,121(4):497-499
In this issue of Cell, identify a first regulatory link between planar cell polarity (PCP) signaling and apical-basal polarity. The authors propose that a component of the apical Crumbs complex regulates the phosphorylation of the Frizzled (Fz) PCP receptor, thus modulating PCP in the Drosophila eye.  相似文献   

3.
The establishment and maintenance of apical–basal cell polarity is critical for assembling epithelia and maintaining organ architecture. Drosophila embryos provide a superb model. In the current view, apically positioned Bazooka/Par3 is the initial polarity cue as cells form during cellularization. Bazooka then helps to position both adherens junctions and atypical protein kinase C (aPKC). Although a polarized cytoskeleton is critical for Bazooka positioning, proteins mediating this remained unknown. We found that the small GTPase Rap1 and the actin-junctional linker Canoe/afadin are essential for polarity establishment, as both adherens junctions and Bazooka are mispositioned in their absence. Rap1 and Canoe do not simply organize the cytoskeleton, as actin and microtubules become properly polarized in their absence. Canoe can recruit Bazooka when ectopically expressed, but they do not obligatorily colocalize. Rap1 and Canoe play continuing roles in Bazooka localization during gastrulation, but other polarity cues partially restore apical Bazooka in the absence of Rap1 or Canoe. We next tested the current linear model for polarity establishment. Both Bazooka and aPKC regulate Canoe localization despite being “downstream” of Canoe. Further, Rap1, Bazooka, and aPKC, but not Canoe, regulate columnar cell shape. These data reshape our view, suggesting that polarity establishment is regulated by a protein network rather than a linear pathway.  相似文献   

4.
Benton R  St Johnston D 《Cell》2003,115(6):691-704
PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation of the Bazooka/PAR-6/aPKC complex by blocking Bazooka oligomerization and binding to aPKC. In epithelia, this complex localizes apically and defines the apical membrane, whereas Bazooka lacking PAR-1 phosphorylation/14-3-3 binding sites forms ectopic lateral complexes. Lateral exclusion by PAR-1/14-3-3 cooperates with apical anchoring by Crumbs/Stardust to restrict Bazooka localization, and loss of both pathways disrupts epithelial polarity. PAR-1 also excludes Bazooka from the posterior of the oocyte, and disruption of this regulation causes anterior-posterior polarity defects. Thus, antagonism of Bazooka by PAR-1/14-3-3 may represent a general mechanism for establishing complementary cortical domains in polarized cells.  相似文献   

5.
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.  相似文献   

6.
Planar cell polarity (PCP) in the Drosophila eye is established by the distinct fate specifications of photoreceptors R3 and R4, and is regulated by the Frizzled (Fz)/PCP signaling pathway. Before the PCP proteins become asymmetrically localized to opposite poles of the cell in response to Fz/PCP signaling, they are uniformly apically colocalized. Little is known about how the apical localization is maintained. We provide evidence that the PCP protein Diego (Dgo) promotes the maintenance of apical localization of Flamingo (Fmi), an atypical Cadherin-family member, which itself is required for the apical localization of the other PCP factors. This function of Dgo is redundant with Prickle (Pk) and Strabismus (Stbm), and only appreciable in double mutant tissue. We show that the initial membrane association of Dgo depends on Fz, and that Dgo physically interacts with Stbm and Pk through its Ankyrin repeats, providing evidence for a PCP multiprotein complex. These interactions suggest a positive feedback loop initiated by Fz that results in the apical maintenance of other PCP factors through Fmi.  相似文献   

7.
Jones TA  Metzstein MM 《Genetics》2011,189(1):153-164
The processes that generate cellular morphology are not well understood. To investigate this problem, we use Drosophila melanogaster tracheal terminal cells, which undergo two distinct morphogenetic processes: subcellular branching morphogenesis and subcellular apical lumen formation. Here we show these processes are regulated by components of the PAR-polarity complex. This complex, composed of the proteins Par-6, Bazooka (Par-3), aPKC, and Cdc42, is best known for roles in asymmetric cell division and apical/basal polarity. We find Par-6, Bazooka, and aPKC, as well as known interactions between them, are required for subcellular branch initiation, but not for branch outgrowth. By analysis of single and double mutants, and isolation of two novel alleles of Par-6, one of which specifically truncates the Par-6 PDZ domain, we conclude that dynamic interactions between apical PAR-complex members control the branching pattern of terminal cells. These data suggest that canonical apical PAR-complex activity is required for subcellular branching morphogenesis. In addition, we find the PAR proteins are downstream of the FGF pathway that controls terminal cell branching. In contrast, we find that while Par-6 and aPKC are both required for subcellular lumen formation, neither Bazooka nor a direct interaction between Par-6 and aPKC is needed for this process. Thus a novel, noncanonical role for the polarity proteins Par-6 and aPKC is used in formation of this subcellular apical compartment. Our results demonstrate that proteins from the PAR complex can be deployed independently within a single cell to control two different morphogenetic processes.  相似文献   

8.
During Drosophila development, neuroblasts divide to generate progeny with two different fates. One daughter cell self-renews to maintain the neuroblast pool, whereas the other differentiates to populate the central nervous system. The difference in fate arises from the asymmetric distribution of proteins that specify either self-renewal or differentiation, which is brought about by their polarization into separate apical and basal cortical domains during mitosis. Neuroblast symmetry breaking is regulated by numerous proteins, many of which have only recently been discovered. The atypical protein kinase C (aPKC) is a broad regulator of polarity that localizes to the neuroblast apical cortical region and directs the polarization of the basal domain. Recent work suggests that polarity can be explained in large part by the mechanisms that restrict aPKC activity to the apical domain and those that couple asymmetric aPKC activity to the polarization of downstream factors. Polarized aPKC activity is created by a network of regulatory molecules, including Bazooka/Par-3, Cdc42, and the tumor suppressor Lgl, which represses basal recruitment. Direct phosphorylation by aPKC leads to cortical release of basal domain factors, preventing them from occupying the apical domain. In this framework, neuroblast polarity arises from a complex system that orchestrates robust aPKC polarity, which in turn polarizes substrates by coupling phosphorylation to cortical release.Cells use polarity for remarkably diverse functions. In this article, I discuss a polarity that is harnessed to generate daughter cells with different fates. Using polarity to divide asymmetrically addresses several challenges that complex organisms face. The diversification of cell types and tissues that occurs during the development of complex organisms is one such challenge. Drosophila neuroblasts, the subject of this article, undergo repeated symmetry breaking asymmetric cell divisions (ACDs) to populate the central nervous system. In a similar manner in adult organisms, ACDs are important for adult homeostasis, replenishing cells that are turned over during the course of normal physiology (Betschinger and Knoblich 2004).A fundamental aspect of ACD is the production of daughter cells containing distinct fate determinants. To segregate fate determinants, the cell becomes polarized to form mutually exclusive cortical domains, each with a set of fate determinants appropriate for one of the two daughter cells. The cleavage furrow forms at the interface of the two domains, partitioning the fate determinants into the two daughter cells where they function to either self-renew (to keep the progenitor population) or to differentiate (e.g., by changing the pattern of gene expression). One of the unique features of the symmetry breaking that occurs during ACD, at least as implemented by the neuroblast, is that it is remarkably dynamic, developing early in mitosis and depolarizing following the completion of cytokinesis.Since the discovery of the first polarized components, neuroblasts have been an excellent model system for investigating the mechanisms of cell polarization and have been extensively analyzed. Although aspects of neuroblast polarity remain unclear, a core framework for how polarity is created and maintained is emerging. In this article, I focus on neuroblast polarity as centered around the activity of atypical protein kinase C, which has emerged as a key regulator of the process. In this framework, neuroblast polarity can be explained by events that polarize aPKC and those that couple aPKC activity to the polarization of fate determinants.  相似文献   

9.
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling.  相似文献   

10.
Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes.  相似文献   

11.
The Frizzled (Fz; called here Fz1) and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/β-catenin pathway or Fz/planar cell polarity (PCP) signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/β-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.  相似文献   

12.
The PAR-3/PAR-6/aPKC complex is required to establish polarity in many different cell types, including the C. elegans zygote and epithelial and neuronal cells in Drosophila and mammals. In each context, the components of this complex display a mutually dependent asymmetric cortical localization. PAR-6 is a direct effector of Rho family GTPases and binds to and regulates aPKC. Mammalian PAR-3 (mPar3) can associate with transmembrane proteins and may link the complex to the membrane, but this can account for only part of the requirement for this protein in the complex. Here we investigate the function of a novel conserved domain, CR1, of PAR-3 using computational, biochemical, and genetic approaches. Sequence-structure comparison by FUGUE predicts that CR1 has the same structural fold as a bacterial oligomerization domain. We show that CR1 of the Drosophila homolog, Bazooka (BAZ), mediates oligomerization in vitro and in vivo. Furthermore, deletion of CR1 disrupts BAZ localization in both epithelial cells and the germline and strongly impairs BAZ function in epithelial polarity. These results indicate that this domain is important for the localization and activity of the PAR-3/PAR6/aPKC complex and define a new role for PAR-3 in assembling higher order protein complexes.  相似文献   

13.
Cell polarity is critical for epithelial structure and function. Adherens junctions (AJs) often direct this polarity, but we previously found that Bazooka (Baz) acts upstream of AJs as epithelial polarity is first established in Drosophila. This prompted us to ask how Baz is positioned and how downstream polarity is elaborated. Surprisingly, we found that Baz localizes to an apical domain below its typical binding partners atypical protein kinase C (aPKC) and partitioning defective (PAR)-6 as the Drosophila epithelium first forms. In fact, Baz positioning is independent of aPKC and PAR-6 relying instead on cytoskeletal cues, including an apical scaffold and dynein-mediated basal-to-apical transport. AJ assembly is closely coupled to Baz positioning, whereas aPKC and PAR-6 are positioned separately. This forms a stratified apical domain with Baz and AJs localizing basal to aPKC and PAR-6, and we identify specific mechanisms that keep these proteins apart. These results reveal key steps in the assembly of the apical domain in Drosophila.  相似文献   

14.
The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.  相似文献   

15.
Polarized epithelial cells convert into migratory invasive cells during a number of developmental processes, as well as when tumors metastasize. Much has been learned recently concerning the molecules and mechanisms that are responsible for generating and maintaining epithelial cell polarity. However, less is known about what becomes of epithelial polarity proteins when various cell types become migratory and invasive. Here, we report the localization of several apical epithelial proteins, Par-6, Par-3/Bazooka and aPKC, during border cell migration in the Drosophila ovary. All of these proteins remained asymmetrically distributed throughout migration. Moreover, depletion of either Par-6 or Par-3/Bazooka by RNAi resulted in disorganization of the border cell cluster and impaired migration. The distributions of several transmembrane proteins required for migration were abnormal following Par-6 or Par-3/Bazooka downregulation, possibly accounting for the migration defects. Taken together, these results indicate that cells need not lose apical/basal polarity in order to invade neighboring tissues and in some cases even require such polarity for proper motility.  相似文献   

16.
Patj has been characterized as one of the so-called polarity proteins that play essential and conserved roles in regulating cell polarity in many different cell types. Studies of Drosophila and mammalian cells suggest that Patj is required for the apical polarity protein complex Crumbs-Stardust (Pals1 or Mpp5 in mammalian cells) to establish apical-basal polarity. However, owing to the lack of suitable genetic mutants, the exact in vivo function of Patj in regulating apical-basal polarity and development remains to be elucidated. Here, we generated molecularly defined null mutants of Drosophila Patj (dPatj). Our data show conclusively that dPatj only plays supporting and non-essential roles in regulating apical-basal polarity, although such a supporting role may become crucial in cells such as photoreceptors that undergo complex cellular morphogenesis. In addition, our results confirm that dPatj possesses an as yet unidentified function that is essential for pupal development.  相似文献   

17.
Frizzled (Fz) signaling regulates cell polarity in both vertebrates and invertebrates. In Drosophila, Fz orients the asymmetric division of the sensory organ precursor cell (pI) along the antero-posterior axis of the notum. Planar polarization involves a remodeling of the apical-basal polarity of the pI cell. The Discs-large (Dlg) and Partner of Inscuteable (Pins) proteins accumulate at the anterior cortex, while Bazooka (Baz) relocalizes to the posterior cortex. Dlg interacts directly with Pins and regulates the localization of Pins and Baz. Pins acts with Fz to localize Baz posteriorly, but Baz is not required to localize Pins anteriorly. Finally, Baz and the Dlg/Pins complex are required for the asymmetric localization of Numb. Thus, the Dlg/Pins complex responds to Fz signaling to establish planar asymmetry in the pI cell.  相似文献   

18.
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.  相似文献   

19.
The Ser/Thr kinases of the PAR-1/MARK/Kin1 family are conserved regulators of polarity in epithelial and non-epithelial cells . Drosophila PAR-1 localizes laterally in the follicular epithelium of the ovary , where it has been shown to function at two distinct levels: It stabilizes the cytoskeleton and it regulates apical-basal polarity by directly inhibiting lateral assembly of the apical aPKC/Bazooka/PAR-6 complex . However, it has been unclear how lateral localization of Drosophila PAR-1 is achieved and whether this localization contributes to epithelial polarity in vivo. Here we show that, through its spacer domain, Drosophila PAR-1 accumulates on the lateral plasma membrane (PM) in cells of the follicular epithelium (FE). Rescue experiments indicate that in FE cells PAR-1 kinase activity is essential for all the described functions of PAR-1. In contrast, the spacer domain of PAR-1 is required for apical-basal polarity and growth control but is dispensable for microtubule (MT) stabilization. Our data indicate that the spacer domain of PAR-1 is required for lateral PM localization of PAR-1 kinase and for development of a polarized FE.  相似文献   

20.
Epithelial cells possess apical-basolateral polarity and form tight junctions (TJs) at the apical-lateral border, separating apical and basolateral membrane domains. The PAR3-aPKC-PAR6 complex plays a central role in TJ formation and apical domain development during tissue morphogenesis. Inactivation and overactivation of aPKC kinase activity disrupts membrane polarity. The mechanism that suppresses active aPKC is unknown. KIBRA, an upstream regulator of the Hippo pathway, regulates tissue size in Drosophila and can bind to aPKC. However, the relationship between KIBRA and the PAR3-aPKC-PAR6 complex remains unknown. We report that KIBRA binds to the PAR3-aPKC-PAR6 complex and localizes at TJs and apical domains in epithelial tissues and cells. The knockdown of KIBRA causes expansion of the apical domain in MDCK three-dimensional cysts and suppresses the formation of apical-containing vacuoles through enhanced de novo apical exocytosis. These phenotypes are restored by inhibition of aPKC. In addition, KIBRA directly inhibits the kinase activity of aPKC in vitro. These results strongly support the notion that KIBRA regulates epithelial cell polarity by suppressing apical exocytosis through direct inhibition of aPKC kinase activity in the PAR3-aPKC-PAR6 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号