首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphagnum peat extracts or hydrolysates have been obtained and used as a culture medium for the production of Candida utilis biomass as single cell proteins. Acid hydrolysis of ground peat (4–60 mesh) in an autoclave operated under a set of conditions for acid strength (0.3-1.5 (v/v) H2SO4), holding time (1–4 hr), temperature (100–165°C), and weight ratio of dry peat to solution (3.3–16.7 g dry peat/100 g solution) yielded carbohydrate-rich extracts of different concentrations (1–34g/liter). The best yield (mg total carbohydrate/g dry peat) was obtained for a holding time of I hr and a temperature of 152°C. Low peat concentratio (4.1 g dry peat/100 g solution)resulted in high yield(280mg total carbohydrate/gdry peat) with a corresponding low carbohydrate content in hydrolysate (13 g/liter), while a lower yield with a higher carbohydrate content (34 g/liter)in hydrolysate were found when increasing peat concentration (16.7 g dry peat/100 g solution). Shake-fladk experiments using peat hydrolysates as the culture medium together with NH4OH (~4.8 g/liter) and K2HPO4(5 g/liter) as nitrogen and phosphate supplement, respectively, gave a maximum biomass concentration of 7.5 g/liter after 60 hr at 30°C and 200rpm. Batch cultivation in a fermentor under controlled conditions for aeration (4.2 liter/min), agitation (500rpm), temperature (30°C), and pH (5.0) produced a maximum biomass of 10 g/liter after 20 hr with a specific growth rate of 0.13 hr?1. For the continuous cultivation, a maximal biomass productivity of 1.24 g/gliter-he was obtained at a dilution rate of 0.125 hr ?1. Monod's equation's equation has been used for the estimation of the coefficients μMax, Ks, and Y. It was found that the yield coefficient Y is not constant during the progress of batch cultivation.  相似文献   

2.
After crude protein of the marine yeast strains maintained in this laboratory was estimated by the method of Kjehldahl, we found that the G7a strain which was identified to be a strain of Cryptococcus aureus according to the routine identification and molecular methods contained high level of protein and could grow on a wide range of carbon sources. The optimal medium for single-cell protein production was seawater containing 6.0 g of wet weight of Jerusalem artichoke extract per 100 ml of medium and 4.0 g of the hydrolysate of soybean meal per 100 ml of medium, while the optimal conditions for single-cell protein production were pH 5.0 and 28.0°C. After fermentation for 56 h, 10.1 g of cell dry weight per liter of medium and 53.0 g of crude protein per 100 g of cell dry weight (5.4 g/l of medium) were achieved, leaving 0.05 g of reducing sugar per 100 ml of medium and 0.072 g of total sugar per 100 ml of medium total sugar in the fermented medium. The yeast strain only contained 2.1 g of nucleic acid per 100 g of cell dry weight, but its cells contained a large amount of C16:0 (19.0%), C18:0 (46.3%), and C18:1 (33.3%) fatty acids and had a large amount of essential amino acids, especially lysine (12.6%) and leucine (9.1%), and vitamin C (2.2 mg per 100 g of cell dry weight). These results show that the new marine yeast strain was suitable for single-cell protein production.  相似文献   

3.
By employing a two-stage continuous-culture system, some of the more important physiological parameters involved in cellulose biosynthesis have been evaluated with an ultimate objective of designing an optimally controlled cellulose process. The two-stage continuous-culture system was run for a period of 1350 hr with Trichoderma reesei strain MCG-77. The temperature and pH were controlled at 32°C and pH 4.5 for the first stage (growth) and 28°C and pH 3.5 for the second stage (enzyme production). Lactose was the only carbon source for the both stages. The ratio of specific uptake rate of carbon to that of nitrogen, Q(C)/Q(N), that supported good cell growth ranged from 11 to 15, and the ratio for maximum specific enzyme productivity ranged from 5 to 13. The maintenance coefficients determined for oxygen, MO, and for carbon source, MC, are 0.85 mmol O2/g biomass/hr and 0.14 mmol hexose/g biomass/hr, respectively. The yield constants determined are: YX/O = 32.3 g biomass/mol O2, YX/C = 1.1 g biomass/g C or YX/C = 0.44 g biomass/g hexose, YX/N = 12.5 g biomass/g nitrogen for the cell growth stage, and YX/N = 16.6 g biomass/g nitrogen for the enzyme production stage. Enzyme was produced only in the second stage. Volumetric and specific enzyme productivities obtained were 90 IU/liter/hr and 8 IU/g biomass/hr, respectively. The maximum specific enzyme productivity observed was 14.8 IU/g biomass/hr. The optimal dilution rate in the second stage that corresponded to the maximum enzyme productivity was 0.026 ~ 0.028 hr?1, and the specific growth rate in the second stage that supported maximum specific enzyme productivity was equal to or slightly less than zero.  相似文献   

4.
Cultivation of Trichoderma reesei QM 9414 on 3% (w/v) cellulose medium (C/N ratio = 8.5) produced 4.5 IU/ml celulase 180 hr at a cell growth of 8.0 g/liter (0.266 g cell/g cellulose). It corresponded to an average cellulase productivity 25.0 IU/liter/hr (3.5 IU/g cell/hr). In the same medium 9.5 g/liter cell mass (0.316 g cell/g cellulose), 6.2 IU/ml cellulase, and 38.75 IU/liter/hr (4.0 IU/g cell/hr) cellulase productivity could be obtained using pH cycling condition during cultivation. Cell mass, cellulase yield, and productivity were further increased to 10.0 g/liter, 7.2 IU/ml, and 44.0 IU/liter/hr (4.5 IU/g cell/hr), respectively, by simultaneous pH cycling and temperature profiling strategy. Results are described.  相似文献   

5.
Summary The ability of C. guilliermondii and C. parapsilosis to ferment xylose to xylitol was evaluated under different oxygen transfer rates in order to enhance the xylitol yield. In C. guilliermondii, a maximal xylitol yield of 0.66 g/g was obtained when oxygen transfer rate was 2.2 mmol/l.h. Optimal conditions to produce xylitol by C. parapsilosis (0.75 g/g) arose from cultures at pH 4.75 with 0.4 mmoles of oxygen/l.h. The response of the yeasts to anaerobic conditions has shown that oxygen was required for xylose metabolism.Nomenclature max maximum specific growth rate (per hour) - qSmax maximum specific rate of xylose consumption (g xylose per g dry biomass per hour) - qpmax maximum specific productivity of xylitol (g xylitol per g dry biomass per hour) - Qp average volumetric productivity of xylitol (g xylitol per liter per hour) - YP/S xylitol yield (g xylitol per g substrate utilized) - YP'/S glycerol yield (g glycerol per g substrate utilized) - YX/S biomass yield (g dry biomass per g substrate utilized)  相似文献   

6.
The conditions for continuous cultivation of Bacillus megaterium on a collagen-derived substrate (SP-100) were determined. The optimum conditions of temperature, pH, and dilution rate were 34 C, pH 7.0, and 0.25/hr, respectively. Increasing the substrate concentration in plain tap water resulted in proportional increases in the productivity of cell mass from 0.6 g per liter per hr at 1% substrate to 1.8 g per liter per hr at 10% substrate; however, the protein content of the biomass decreased from 60 to 36%, and the protein yield decreased from 91 to 50% at substrate concentrations of 1 and 10%, respectively. These effects (decreases) were reversed up to 7.5% substrate by mineral supplementation of the medium. The productivity of biomass increased from 0.6 to 1.9 per liter per hr; the protein content of the biomass, from 43 to 54%; and the protein yield, from 60 to 93%, respectively, as the substrate concentration (with mineral supplementation of the medium) was increased from 1 to 7.5%. Spent medium could be refortified and recycled as often as five times. The amino acids in the substrate protein appeared to be utilized for growth and metabolism more or less uniformly. Analysis of the B. megaterium biomass indicated considerable enrichment of the essential amino acids and reduction of proline, glycine, and hydroxyproline as compared to the collagen-derived substrate. The Protein Efficiency Ratios obtained on the collagen-derived substrate (SP-100) and on the B. megaterium biomass, expressed as percentages of the casein reference protein, were 14 and 74%, respectively. Thus, considerable improvement in nutritional value was effected by bacterial conversion of the collagen-derived substrate into single-cell protein.  相似文献   

7.
Summary Escherichia coli B (ATCC 11303) carrying the PET operon on plasmid pLOI 297 converted hemicellulose hydrolysate to ethanol at an efficiency of 94% theoretical maximum, which is 15% better than the highest efficiency reported for pentose utilizing yeasts in a comparable system. Aspen prehydrolysate (APH), that had been produced by theBio-Hol Process using a Wenger extruder with SO2 as catalyst, was used as feedstock. The fermentation medium contained predominantly xylose (35g/L) with acetic acid present at about 6g/L. With the pH controlled at 7.0, this concentration of acetic acid was not inhibitory for growth or xylose fermentation. When the APH was fortified with nutrients (tryptone and yeast extract), the recombinant (inoculated at 0.5 g dry wt/L) converted 100% of the xylose to ethanol with a volumetric productivity of 0.29 g/L/hr. Overliming the APH with Ca(OH)2, followed by neutralization to pH 7 with sulphuric acid and removal of the insolubles, resulted in a 2-fold increase in productivity. The max. productivity was 0.76 g/L/hr. The productivity in Ca(OH)2-treated APH, fortified with only mineral salts, was 0.26 g/L/hr.  相似文献   

8.
Simulation of the dynamics in a fed batch process for production of Baker's yeast is discussed and applied. Experimental evidences are presented for a model of the energy metabolism. The model involves the concept of a maximum respiratory capacity of the cell. If the sugar concentration is increased above a critical value, corresponding to a critical rate of glycolysis and a maximum rate of respiration, then all additional sugar consumed at higher sugar concentrations is converted into ethanol.In a fed batch process with constant sugar feed the sugar concentration declines slowly. If ethanol is present when the sugar concentration declines below the critical value of 110 mg/dm3 fructose +glucose the metabolism switches rapidly into combined oxidation of sugar and ethanol. Thus, no diauxic growth is involved under process conditions. The rate of ethanol consumption is determined by the free capacity of respiration under these conditions. The invertase activity of the cells was found to be so high that mainly fructose and glucose were present in the medium, typically in the concentration range around 100 mg/dm3. These components are consumed at the same rate but with fructose at a higher concentration, indicating a higher K s for fructose consumption.The model was used in simulation experiments to demonstrate the dynamics of the Baker's yeast process and the influence of different process conditions.List of Symbols DOT % air sat dissolved oxygen tension - F dm3/h rate of inlet medium flow - H kg/(dm3 % air sat.) oxygen solubility - K kg/m3 saturation constant specified by index - K L a 1/h volumetric oxygen transfer coefficient - m g/(g · h) maintenance coefficient specified by index - P kg/(m3 · h) mean productivity of biomass in the process - q g/(g · h) specific consumption or production rate - S kg/m3 concentration of sugar in reactor - S 0 kg/m3 concentration of inlet medium sugar medium t h process time - V dm3 medium volume - X kg/m3 concentration of biomass - Y g/g yield coefficient specified by index - 1/h specific growth rate Index aa anaerobic condition - c critical value - e ethanol - ec ethanol consumption - ep ethanol production - max maximum value - o oxygen - oe oxygen for growth on ethanol - os oxygen for growth on sugar - s sugar - x biomass  相似文献   

9.
为生产合适的硒源提供一种思路,以菌丝体生物量、含硒量、还原糖、氨态氮和蛋白质为指标,采用四因素三水平正交设计法优化虎掌菌的富硒发酵条件,探讨不同浓度的硒对虎掌菌固体培养菌丝生长和液体培养产生的生物组分的影响。结果表明,高浓度的硒抑制虎掌菌菌丝体生长;正交试验选择不同的衡量指标,由极差分析得出各因素的影响程度大小,结合证实试验得到以还原糖为指标的最优组合为葡萄糖6%(质量分数)、酵母浸膏3%(质量分数)、KH_2PO_4 0.1%(质量分数)、Na_2SeO_3 0.6 mmol/L,其菌丝体生物量和氨态氮含量较高。与对照相比,加硒后虎掌菌发酵液中氨态氮、还原糖和总糖含量显著增加(P0.05);当硒浓度为0.5 mmol/L时,氨态氮、还原糖和总糖含量均达到最高值。菌丝体生物量和可溶性蛋白质分别在硒浓度为0.2 mmol/L和0.4 mmol/L时达到最大值。虎掌菌富硒培养后,发酵液的营养成分含量会发生变化。  相似文献   

10.
Phanerochaete chrysosporium was grown in fermentors on NaOH-extracted maple, pine, and cedar barks at the optimum substrate concentration of 1% (w/v). The yields (mg protein/liter) on maple, pine, and cedar were 1500, 1200, and 880, respectively, which are probably due to the different lignin contents of the barks. Lignin is not utilized. The productivities at 30°C obtained for pine (4.07 × 10?2 g protein/liter hr) and cedar (2.63 × 10?2 g protein/liter hr) barks were greater than for maple (2.63 × 10?2 g protein/liter hr). The substrate (bark) was the limiting component of the fermentation. Over the 26–38°C temperature range protein productivity increased by a factor of three (1.55 × 10?2 vs. 4.61 × 10?2 g protein/liter hr) for maple bark. Low agitation rates resulted in an overproduction of cellulase and reduced levels of microbial protein.  相似文献   

11.
Summary A system coupling fermentor and decantor permitted strong accumulation of yeast flocs that were homogeneously suspended in the reactional volume. At 100–190 g/l glucose feed practically total substrate conversion was attained. At 130 g/l glucose feed the highest productivity (18.4 g.l.h) and the highest ethanol yield (90.6%) were reached with biomass levels of 80–90 g/l. We observed that the stability of this system is limited when a critical fermentation rate (D.So) close to 39–40 g/l.h (with corresponding ethanol productivities of 19–20 g/l.h) is reached. Higher fermentation rates provoked de-flocculation and lost of biomass.Symbols D dilution rate (h–1) - E ethanol (g/l) - Sr residual substrate (g/l) - So substrate in the feed (g/l) - X biomass (g/l) - ethanol yield (%) - DSo fermentation rate (g/l.h) (for Sr0) - PE ethanol productivity (g/l.h)  相似文献   

12.
A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett–Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98 g/L for cane molasses, 2.35 g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89 g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97 g/L of biomass was obtained after 36 hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.  相似文献   

13.
A general model of the kinetics of microbial growth has been developed involving the kinetics of incorporation of substrate into biomass and the maintenance energy requirements. Results obtained from batch cultures of the yeast Saccharomyces cerevisiae growing in synthetic media at pH 5.1 and 30°C permitted all biological parameters in the model to be calculated. Values obtained for these parameters were: maximum specific glucose uptake rate (μSm), 2.08 g/g biomass/hr; apparent Michaelis constant for glucose (KS), 0.1 g/liter (5.5 × 10?4M) apparent Michaelis constant for oxygen (KL), 1.4% O2 (3.2 × 10?6 M) quantitative index of the Pasteur effect (b), 4.9 × 10?4%?1 O2 (207 M ?1). Under conditions of strongly substrate-repressed respiration the values obtained for YATP and P/O were constant over the course of the exponential phase of growth (YATP = 10.4 g biomass/mole ATP; P/O = 3 moles ATP/atom 0). Mass balances for aerobic and anaerobic cultures confirmed the results obtained form the generalized model. Results presented suggested the operation of a mechanism for regulating energy-yielding metabolism which involved an equilibrium between the systems of oxidative phosphorylation and dephosphorylation and was dependent upon the level of catbolite repression.  相似文献   

14.
Assessing the impact of land‐use changes on soil respiration (RS) is of vital significance to understand the interactions between belowground metabolism and regional carbon budgets. In this study, the monthly in situ RS was examined between 09:00 and 12:00 hours over a 3‐year period within a representative land‐use sequence in the subtropical region of China. The land‐use sequence contained natural forest (control treatment), secondary forest, two plantations, citrus orchard and sloping tillage land. Results showed that the RS exhibited a distinct seasonal pattern, and it was dominantly controlled by the soil temperature. After the land‐use conversion, the apparent temperature sensitivity of RS (Q10) was increased from 2.10 in natural forest to 2.71 in sloping tillage land except for an abnormal decrease to 1.66 in citrus orchard. Contrarily, the annual RS was reduced by 32% following the conversion of natural forest to secondary forest, 46–48% to plantations, 63% to citrus orchard and 50% to sloping tillage land, with the average reduction of 48%. Such reduction of annual RS could be explained by the decrease of topsoil organic carbon and light‐fraction organic carbon storages, live biomass of fine root (<2 mm) and annual litter input, which indirectly/directly correlated with plant productivity. Our results suggest that substrate availability (e.g., soil organic carbon and nutrients) and soil carbon input (e.g., fine root turnover and litterfall) through plant productivity may drive the RS both in natural and managed ecosystems following strong disturbance events.  相似文献   

15.
Summary Growth and ethanol production by three strains (MSN77, thermotolerant, SBE15, osmotolerant and wild type ZM4) of the bacterium Zymomonas mobilis were tested in a rich medium containing the hexose fraction from a cellulose hydrolysate (Aspen wood). The variations of yield and kinetic parameters with fermentation time revealed an inhibition of growth by the ethanol produced. This inhibition may result from the increase in medium osmolality due to ethanol formation from glucose.Nomenclature S glucose concentration (g/L) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - Qp volumetric ethanol productivity (g/L.h) - QX volumetric biomass productivity (g/L.h) - YX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

16.
Cultivation of Corynebacterium hydrocarboclastus, which is capable of synthesizing an extracellular polymer and utilized hydrocarbons, has been reported. Growth studies in shake flasks and fermenters were made to obtain maximum polymer production. Polymer formation was found to be growth associated. The highest level of polymer accumulation was attained after 50–60 hr cultivation in the fermenter and it amounted to approximately 5.5–6 g/liter of fermentation broth. The medium contained initially 2% (v/v) kerosene as a carbon source. The maximum yield obtained corresponds to 37–40% (w/w) of kerosene supplied. At the same time the cell concentration was 10–13 g/liter which represents the yield of 67–87% (w/w). The rate of polymer production in the exponential phase was 0.25 g/liter hr and cell production rate was 0.27 g/liter hr. Sodium nitrate, 0.5%, and yeast extract, 0.3%, (w/w) were the best nigrogen sources for polymer formation. The highest level of polymer produced in broth was 6 g/liter.  相似文献   

17.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

18.
Rapid fermentation of bagasse hydrolysate to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae has been studied in batch and continuous cultures at pH 4.0 and 30°C temperature with cell recycle. By using a 23.6 g/liter cell concentration, a concentation of 9.7% (w/v)ethanol was developed in a period of 6 hr. The rate of fermentation was found to increase with supplementation of yeast vitamins in the hydrolysate. In continuous culture employing cell recycle and a 0.127 v/v/m air flow rate, a cell mass concentration of 48.5 g/liter has been achieved. The maximum fermentor productivity of ethanol obtained under these conditions was 32.0 g/liter/hr, which is nearly 7.5 times higher than the normal continuous process without cell recycle and air sparging. The ethanol productivity was found to decrease linearly with ethanol concentration. Conversion of glucose in the hydrolysate to ethanol was achieved with a yield of 95 to 97% of theoretical.  相似文献   

19.
Conditions for the laboratory-scale production of acetoin plus diacetyl by Enterobacter Cloacae ATCC 27613 were studied. Thirty-five g acetoin plus diacetyl/50 g sucrose were obtained when fermentation was carried out in 2. 5 liter medium containing 12.5 g peptone and 12. 5 g yeast extract, at pH 7.0, in a 5 liter conical flask on a shaker (240rpm) at 28–30°C for 48 hr. Recovery of pure diacetyl was 85% of the total plus diacetyl.  相似文献   

20.
采用液体发酵蝉拟青霉,对蝉拟青霉的发酵条件进行优化,以提高蝉拟青霉胞外多糖产量及生物量。摇瓶发酵条件下,在单因素基础上设计正交实验确定各因素的最佳组合。优化后得最佳发酵培养基:蔗糖8%,牛肉膏0.75%,酵母膏0.125%,MgSO_4·7H_2O 0.3%,KH_2PO_4 0.2%,麸皮0.5%。该条件下胞外多糖产量为5.96 g/L,生物量为42 g/L,较优化前提高了1倍。采用发酵罐进行扩大培养,对分批发酵时的初糖浓度进行了优化,并分析了补料分批发酵对发酵过程的影响。发酵罐培养时最适初糖浓度为5%,此时生物量最高为38 g/L,多糖含量最高为5.5 g/L;采用补料分批发酵时,多糖产量最高为5.89 g/L,生物量最高为40 g/L,效果优于分批发酵。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号