首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replication stress (RS) is a source of DNA damage that has been linked to cancer and aging, which is suppressed by the ATR kinase. In mice, reduced ATR levels in a model of the ATR-Seckel syndrome lead to RS and accelerated aging. Similarly, ATR-Seckel embryonic fibroblasts (MEF) accumulate RS and undergo cellular senescence. We previously showed that senescence of ATR-Seckel MEF cannot be rescued by p53-deletion. Here, we show that the genetic ablation of the INK4a/Arf locus fully rescues senescence on ATR mutant MEF, but also that induced by other conditions that generate RS such as low doses of hydroxyurea or ATR inhibitors. In addition, we show that a persistent exposure to RS leads to increased levels of INK4a/Arf products, revealing that INK4a/ARF behaves as a bona fide RS checkpoint. Our data reveal an unknown role for INK4a/ARF in limiting the expansion of cells suffering from persistent replication stress, linking this well-known tumor suppressor to the maintenance of genomic integrity.  相似文献   

2.
The distribution of contractile forces generated in cytoskeletal stress fibers (SFs) contributes to cellular dynamic functions such as migration and mechanotransduction. Here we describe a novel (to our knowledge) method for measuring local tensions in SFs based on the following procedure: 1), known forces of different magnitudes are applied to an SF in the direction perpendicular to its longitudinal axis; 2), force balance equations are used to calculate the resulting tensions in the SF from changes in the SF angle; and 3), the relationship between tension and applied force thus established is extrapolated to an applied force of zero to determine the preexisting tension in the SF. In this study, we measured tensions in SFs by attaching magnetic particles to them and applying known forces with an electromagnetic needle. Fluorescence microscopy was used to capture images of SFs fluorescently labeled with myosin II antibodies, and analysis of these images allowed the tension in the SFs to be measured. The average tension measured in this study was comparable to previous reports, which indicates that this method may become a powerful tool for elucidating the mechanisms by which cytoskeletal tensions affect cellular functions.  相似文献   

3.
eEF1A-1 and eEF1A-2 are two isoforms of translation elongation factor eEF1A. In adult mammalian tissues, isoform eEF1A-1 is present in all tissues except neurons, cardiomyocytes, and myotubes, where its isoform, eEF1A-2, is the only form expressed. Both forms of eEF1A have been characterized to function in the protein elongation step of translation, and eEF1A-1 is shown to possess additional non-canonical roles in actin binding/bundling, microtubule bundling/severing, and cellular transformation processes. To study whether eEF1A-2 has similar non-canonical functions, we carried out a yeast two-hybrid screening using a full sequence of mouse eEF1A-2 as bait. A total of 78 hits, representing 23 proteins, were identified and validated to be true positives. We have focused on the protein with the highest frequency of hits, peroxiredoxin I (Prdx-I), for in-depth study of its functional implication for eEF1A-2. Here we show that Prdx-I coimmunoprecipitates with eEF1A-2 from extracts of both cultured cells and mouse tissues expressing this protein, but it does not do so with its isoform, eEF1A-1, even though the latter is abundantly present. We also report that an eEF1A-2 and Prdx-I double transfectant increases resistance to peroxide-induced cell death as high as 1 mM peroxide treatment, significantly higher than do single transfectants with either gene alone; this protection is correlated with reduced activation of caspases 3 and 8, and with increased expression of pro-survival factor Akt. Thus, our results suggest that eEF1A-2 interacts with Prdx-I to functionally provide cells with extraordinary resistance to oxidative stress-induced cell death.  相似文献   

4.
Actin stress fibers (SFs) generate intercellular tension and play important roles in cellular mechanotransduction processes and the regulation of various cellular functions. We recently found, in vascular smooth muscle cells (SMCs) cultured on a substrate, that the apical SFs running across the top surface of the nucleus have a mechanical connection with the cell nucleus and that their internal tension is transmitted directly to the nucleus. However, the effects of the connecting conditions and binding forces between SFs and the nucleus on force transmission processes are unclear at this stage. Here, we estimated the mechanical connection between apical SFs and the nucleus in SMCs, taking into account differences in the contractility of individual SFs, using experimental and numerical approaches. First, we classified apical SFs in SMCs according to their morphological characteristics: one subset appeared pressed onto the apical surface of the nucleus (pressed SFs), and the other appeared to be smoothly attached to the nuclear surface (attached SFs). We then dissected these SFs by laser irradiation to release the pretension, observed the dynamic behavior of the dissected SFs and the nucleus, and estimated the pretension of the SFs and the connection strength between the SFs and the nucleus by using a simple viscoelastic model. We found that pressed SFs generated greater contractile force and were more firmly connected to the nuclear surface than were attached SFs. We also observed line-like concentration of the nuclear membrane protein nesprin 1 and perinuclear DNA that was significantly located along the pressed SFs. These results indicate that the internal tension of pressed SFs is transmitted to the nucleus more efficiently than that of attached SFs, and that pressed SFs have significant roles in the regulation of the nuclear morphology and rearrangement of intranuclear DNA.  相似文献   

5.
6.
Elongation factor-2 (eEF2) catalyzes the movement of the ribosome along the mRNA. A single histidine residue in eEF2 (H715) is modified to form diphthamide. A role for eEF2 in the cellular stress response is highlighted by the fact that eEF2 is sensitive to oxidative stress and that it must be active to drive the synthesis of proteins that help cells to mitigate the adverse effects of oxidative stress. Many of these proteins are encoded by mRNAs containing a sequence called an “internal ribosomal entry site” (IRES). Under high oxidative stress conditions diphthamide-deficient cells were significantly more sensitive to cell death. These results suggest that diphthamide may play a role in protection against the degradation of eEF2. This protection is especially important in those situations in which eEF2 is necessary for the reprogramming of translation from global to IRES synthesis. Indeed, we found that the expression of X-linked inhibitor of apoptosis (XIAP) and fibroblast growth factor 2 (FGF2), two proteins synthesized from mRNAs with IRESs that promote cell survival, is deregulated in diphthamide-deficient cells. Our findings therefore suggest that eEF2 diphthamide controls the selective translation of IRES-dependent protein targets XIAP and FGF2, critical for cell survival under conditions of oxidative stress.  相似文献   

7.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

8.
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models.  相似文献   

9.
Cho DI  Oak MH  Yang HJ  Choi HK  Janssen GM  Kim KM 《Life sciences》2003,73(23):2991-3004
Novel signaling components of dopamine D3 receptor (D3R) were searched using yeast two-hybrid system, and the gamma subunit of elongation Factor-1B (eEF1Bgamma) was found to interact with D3R. This interaction was observed specifically between eEF1Bgamma and D3R but not with D2R or D4R. Immunocytochemical studies showed that D3R and eEF1Bgamma form clusters on the plasma membrane and their co-localization was evident in these clusters. The beta subunit of eEF1B (eEF1Bbeta), which forms a tight complex with eEF1Bgamma, was phosphorylated on serine residues in response to the stimulation of D3R. Phosphorylation of eEF1Bbeta was insensitive to pertussis toxin or wortmannin, however, stimulation of cellular protein kinase C (PKC) directly phosphorylated eEF1Bbeta and depletion of PKC abolished D3R-mediated phosphorylation of eEF1Bbeta. These results suggest the involvement of PKC, but not Gi/o proteins or phosphatidylinositol 3-kinase, in D3R-mediated phosphorylation of eEF1Bbeta. Stimulation of D3R did not activate PKC, but the activation of PKC resulted in the phosphorylation of D3R. These results show that PKC has a permissive role for the D3R-mediated phosphorylation of eEF1Bbeta, and suggest that PKC could modulate the mutual interaction between two protein by phosphorylating both D3R and eEF1Bbeta. Therefore, the cellular PKC level would be important for the D3R-mediated modulation of eEF1B, and for their cellular regulations such as protein synthesis or cellular proliferation.  相似文献   

10.
The Legionella pneumophila Dot/Icm type IV secretion system is essential for the biogenesis of a phagosome that supports bacterial multiplication, most likely via the functions of its protein substrates. Recent studies indicate that fundamental cellular processes, such as vesicle trafficking, stress response, autophagy and cell death, are modulated by these effectors. However, how each translocated protein contributes to the modulation of these pathways is largely unknown. In a screen to search substrates of the Dot/Icm transporter that can cause host cell death, we identified a gene whose product is lethal to yeast and mammalian cells. We demonstrate that this protein, called SidI, is a substrate of the Dot/Icm type IV protein transporter that targets the host protein translation process. Our results indicate that SidI specifically interacts with eEF1A and eEF1Bγ, two components of the eukaryotic protein translation elongation machinery and such interactions leads to inhibition of host protein synthesis. Furthermore, we have isolated two SidI substitution mutants that retain the target binding activity but have lost toxicity to eukaryotic cells, suggesting potential biochemical effect of SidI on eEF1A and eEF1Bγ. We also show that infection by L. pneumophila leads to eEF1A‐mediated activation of the heat shock regulatory protein HSF1 in a virulence‐dependent manner and deletion of sidI affects such activation. Moreover, similar response occurred in cells transiently transfected to express SidI. Thus, inhibition of host protein synthesis by specific effectors contributes to the induction of stress response in L. pneumophila‐infected cells.  相似文献   

11.
Cellular protein eukaryotic translation elongation factor 1A (eEF1A) is an actin binding protein that plays a role in the formation of filamentous actin (F-actin) bundles. F-Actin regulates multiple stages of respiratory syncytial virus (RSV) replication including assembly and budding. Our previous study demonstrated that eEF1A knock-down significantly reduced RSV replication. Here we investigated if the eEF1A function in actin bundle formation was important for RSV replication and release. To investigate this, eEF1A function was impaired in HEp-2 cells by either knock-down of eEF1A with siRNA, or treatment with an eEF1A inhibitor, didemnin B (Did B). Cell staining and confocal microscopy analysis showed that both eEF1A knock-down and treatment with Did B resulted in disruption of cellular stress fiber formation and elevated accumulation of F-actin near the plasma membrane. When treated cells were then infected with RSV, there was also reduced formation of virus-induced cellular filopodia. Did B treatment, similarly to eEF1A knock-down, reduced the release of infectious RSV, but unlike eEF1A knock-down, did not significantly affect RSV genome replication. The lower infectious virus production in Did B treated cells also reduced RSV-induced cell death. In conclusion, the cellular factor eEF1A plays an important role in the regulation of F-actin stress fiber formation required for RSV assembly and release.  相似文献   

12.
Protein synthesis, in particular peptide chain elongation, is an energy-consuming biosynthetic process. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in cellular energy homeostasis. Therefore, we tested the hypothesis that, as in liver, it could mediate the inhibition of protein synthesis by oxygen deprivation in heart by modulating the phosphorylation of eukaryotic elongation factor-2 (eEF2), which becomes inactive in its phosphorylated form. In anoxic cardiomyocytes, AMPK activation was associated with an inhibition of protein synthesis and an increase in phosphorylation of eEF2. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), did not mimic the effect of oxygen deprivation to inhibit protein synthesis in cardiomyocytes or lead to eEF2 phosphorylation in perfused hearts, suggesting that AMPK activation did not inhibit mTOR/p70 ribosomal protein S6 kinase (p70S6K) signaling. Human recombinant eEF2 kinase (eEF2K) was phosphorylated by AMPK in a time- and AMP-dependent fashion, and phosphorylation led to eEF2K activation, similar to that observed in extracts from ischemic hearts. In contrast, increasing the workload resulted in a dephosphorylation of eEF2, which was rapamycin-insensitive, thus excluding a role for mTOR in this effect. eEF2K activity was unchanged by increasing the workload, suggesting that the decrease in eEF2 phosphorylation could result from the activation of an eEF2 phosphatase.  相似文献   

13.
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.  相似文献   

14.
The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.  相似文献   

15.
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P(2)]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIbeta), and we find that production of eEF1A2-dependent PI(4,5)P(2) and generation of filopodia require PI4KIIIbeta. Furthermore, PI4KIIIbeta is itself capable of activating both the production of PI(4,5)P(2) and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIbeta, and activated PI4KIIIbeta stimulates production of PI(4,5)P(2) and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIbeta in the control of PI(4,5)P(2) signaling and actin remodeling.  相似文献   

16.
It has been proposed that buckling of actin stress fibers (SFs) may be associated with their disassembly. However, much of the detail remains unknown partly because the use of an elastic membrane sheet, conventionally necessary for inducing SF buckling with a mechanical compression to adherent cells, may limit high quality and quick imaging of the dynamic cellular events. Here, we present an alternate approach to induce buckling behavior of SFs on a readily observable glass plate. Actin SFs were extracted from cells, and constituent myosin II (MII) molecules were partially photo-inactivated in contractility. An addition of Mg-ATP allowed actin-myosin cross-bridge cycling and resultant contraction of only thick SFs that still contained active MII in the large volume. Meanwhile, thin SFs with virtually no active motor protein in the small volume had no choice but to buckle with the shortening movement of nearby thick SFs functioning as a compression-inducing element. This novel technique, thus allowing for selective inductions of contraction and buckling of SFs and measurements of the cellular prestress, may be applicable to not only investigations on their disassembly mechanisms but also to measurements of the relative thickness of individual SFs in each cell.  相似文献   

17.
Somatic cells undergo a permanent cell cycle arrest, called cellular senescence, after a limited number of cell divisions in vitro. Both the tumor suppressor protein p53 and the stress-response protein p66(shc) are suggested to regulate the molecular events associated with senescence. This study was undertaken to investigate the effect of different oxygen tensions and oxidative stress on cell longevity and to establish the role of p53 and p66(shc) in cells undergoing senescence. As a model of cellular senescence, primary fetal bovine fibroblasts were cultured in either 20% O(2) or 5% O(2) atmospheres until senescence was reached. Fibroblasts cultured under 20% O(2) tension underwent senescence after 30 population doublings (PD), whereas fibroblasts cultured under 5% O(2) tension did not exhibit signs of senescence. Oxidative stress, as measured by protein carbonyl content, was significantly elevated in senescent cells compared to their younger counterparts and to fibroblasts cultured under 5% O(2) at the same PD. p53 mRNA gradually decreased in 20% O(2) cultured fibroblasts until senescence was reached, whereas p53 protein levels were significantly increased as well as p53 phosphorylation on serine 20, suggesting that p53 might be stabilized by posttranslational modifications during senescence. Senescence was also associated with high levels of p66(shc) mRNA and protein levels, while the levels remained low and stable in dividing fibroblasts under 5% O(2) atmosphere. Taken together, our results show an effect of oxidative stress on the replicative life span of fetal bovine fibroblasts as well as an involvement of p53, serine 20-p53 phosphorylation and p66(shc) in senescence.  相似文献   

18.
Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.  相似文献   

19.
Li N  Li Q  Cao X  Zhao G  Xue L  Tong T 《FEBS letters》2011,585(19):3106-3112
  相似文献   

20.
《Cellular signalling》2014,26(9):1870-1877
Mitogen-inducible gene-6 (Mig-6) is a cytosolic multiadaptor protein that is best known for its role as a negative feedback regulator of epidermal growth factor receptor (EGFR) mediated signalling. Alternative roles of Mig-6 are becoming increasingly recognised. Consistently with this, Mig-6 was demonstrated to be involved in a broad spectrum of cellular events including tumour suppression which may include the induction of cellular senescence. Here, we investigated the mechanisms of Mig-6 induced premature cell senescence. Endogenous Mig-6 is poorly expressed in young fibroblasts, whilst its expression rises in cells presenting with typical features of senescence. Overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early passage diploid lung fibroblasts (WI-38). Interestingly, Mig-6 overexpression reduced retinoblastoma protein (pRb) phosphorylation at the inactivating Ser249/Thr252 sites. We also found that phosphorylation of these sites in pRb is increased in the presence of the B-Raf V600E oncogenic mutation. We further show that Mig-6 overexpression reduces B-Raf V600E mediated pRb inactivation and preserves pRb function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号