共查询到20条相似文献,搜索用时 15 毫秒
1.
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3′-side 1 nt from a deaminated base lesion. DNA cleavage analysis using mutants defective in DNA binding and Mn2+ as a metal cofactor reveals a novel 3′-exonuclease activity in endonuclease V [Feng,H., Dong,L., Klutz,A.M., Aghaebrahim,N. and Cao,W. (2005) Defining amino acid residues involved in DNA-protein interactions and revelation of 3′-exonuclease activity in endonuclease V. Biochemistry, 44, 11486–11495.]. This study defines the enzymatic nature of the endonuclease and exonuclease activity in endonuclease V from Thermotoga maritima. In addition to its well-known inosine-dependent endonuclease, Tma endonuclease V also exhibits inosine-dependent 3′-exonuclease activity. The dependence on an inosine site and the exonuclease nature of the 3′-exonuclease activity was demonstrated using 5′-labeled and internally-labeled inosine-containing DNA and a H214D mutant that is defective in non-specific nuclease activity. Detailed kinetic analysis using 3′-labeled DNA indicates that Tma endonuclease V also possesses non-specific 5′-exonuclease activity. The multiplicity of the endonuclease and exonuclease activity is discussed with respect to deaminated base repair. 相似文献
2.
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli. 相似文献
3.
Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). 下载免费PDF全文
The Escherichia coli exonuclease III (AP endonuclease VI) is a DNA-repair enzyme that hydrolyzes the phosphodiester bond 5' to an abasic site in DNA. To study how the enzyme recognizes the abasic site, we used oligonucleotides containing a synthetic abasic site at any desired position in the sequence. We prepared oligonucleotides containing an abasic residue such as 2'-deoxyribosylformamide, 2'-deoxyribose, 1',2'-dideoxy ribofuranose or propanediol. Duplex oligonucleotides containing an abasic residue used in this study were cleaved on the 5' side of the abasic site by exonuclease III in spite of the varieties of the bases opposite and adjacent to the abasic site. In addition, we observed that the enzyme cleaved single-stranded oligonucleotides containing an abasic site on the 5' side of the abasic site. These findings suggest that the enzyme may principally recognize the DNA-pocket formed at an abasic site. The indole ring of the tryptophan 212 residue of the exonuclease III is probably intercalated to the abasic site. The tryptophan in the vicinity of the catalytic site is conserved in the type II AP endonuclease from various organisms. 相似文献
4.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2022,1866(12):130198
Human apurinic/apyrimidinic endonuclease APE1 catalyzes endonucleolytic hydrolysis of phosphodiester bonds on the 5′ side of structurally unrelated damaged nucleotides in DNA or native nucleotides in RNA. APE1 additionally possesses 3′-5′-exonuclease, 3′-phosphodiesterase, and 3′-phosphatase activities. According to structural data, endo- and exonucleolytic cleavage of DNA is executed in different complexes when the excised residue is everted from the duplex or placed within the intrahelical DNA cavity without nucleotide flipping. In this study, we investigated the functions of residues Arg177, Arg181, Tyr171 and His309 in the APE1 endo- and exonucleolytic reactions. The interaction between residues Arg177 and Met270, which was hypothesized recently to be a switch for endo- and exonucleolytic catalytic mode regulation, was verified by pre–steady-state kinetic analysis of the R177A APE1 mutant. The function of another DNA-binding–site residue, Arg181, was analyzed too; it changed its conformation when enzyme–substrate and enzyme–product complexes were compared. Mutation R181A significantly facilitated the product dissociation stage and only weakly affected DNA-binding affinity. Moreover, R181A reduced the catalytic rate constant severalfold due to a loss of contact with a phosphate group. Finally, the protonation/deprotonation state of residues Tyr171 and His309 in the catalytic reaction was verified by their substitution. Mutations Y171F and H309A inhibited the chemical step of the AP endonucleolytic reaction by several orders of magnitude with retention of capacity for (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran-containing-DNA binding and without changes in the pH dependence profile of AP endonuclease activity, indicating that deprotonation of these residues is likely not important for the catalytic reaction. 相似文献
5.
The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites 总被引:6,自引:7,他引:6 下载免费PDF全文
Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage. Whereas these enzymes use a lyase-like rather than a hydrolytic mechanism, they nonetheless catalyze phosphodiester bond cleavage. We suggest that the term endonuclease can be properly applied to them. 相似文献
6.
Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-α,β unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the α,β unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant. 相似文献
7.
Ma Liya Wang Wen Hao Chaozhi Zheng Li Wang Ling Zheng Minggang 《Biotechnology letters》2021,43(7):1349-1355
Biotechnology Letters - All RecJ proteins are known to date only perform exonuclease activity. The present study reports that a novel RecJ protein obtained from Bacillus cereus isolated from marine... 相似文献
8.
An endonuclease specific for apurinic/apyrimidinic (AP) sites was identified and purified from extracts of Deinococcus radiodurans. The enzyme is 34.5 kD, has no activity towards normal, alkylated, uracil-containing, or UV-irradiated DNA, and is active in the presence of EDTA. The addition of up to 10 mM Mg2+ or Mn2+ did not affect activity, but higher concentrations were inhibitory. There is no associated exonuclease activity, either in the presence or absence of divalent cation. Optimal reaction conditions were 150 mM NaCl and pH 7.5. A uracil DNA glycosylase was also detected, active in the presence of EDTA, selectively removing uracil from DNA without generating other byproducts. The optimal reaction conditions were 50 mM NaCl and pH 7.5. Implications for base excision repair in D. radiodurans are discussed. 相似文献
9.
Vidal AE Harkiolaki M Gallego C Castillo-Acosta VM Ruiz-Pérez LM Wilson K González-Pacanowska D 《Journal of molecular biology》2007,373(4):827-838
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage. 相似文献
10.
Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1 总被引:1,自引:0,他引:1
Human AP endonuclease 1 (APE1, REF1) functions within the base excision repair pathway by catalyzing the hydrolysis of the phosphodiester bond 5 ' to a baseless sugar (apurinic or apyrimidinic site). The AP endonuclease activity of this enzyme and two active site mutants were characterized using equilibrium binding and pre-steady-state kinetic techniques. Wild-type APE1 is a remarkably potent endonuclease and highly efficient enzyme. Incision 5 ' to AP sites is so fast that a maximal single-turnover rate could not be measured using rapid mixing/quench techniques and is at least 850 s(-1). The entire catalytic cycle is limited by a slow step that follows chemistry and generates a steady-state incision rate of about 2 s(-1). Site-directed mutation of His-309 to Asn and Asp-210 to Ala reduced the single turnover rate of incision 5 ' to AP sites by at least 5 orders of magnitude such that chemistry (or a step following DNA binding and preceding chemistry) and not a step following chemistry became rate-limiting. Our results suggest that the efficiency with which APE1 can process an AP site in vivo is limited by the rate at which it diffuses to the site and that a slow step after chemistry may prevent APE1 from leaving the site of damage before the next enzyme arrives to continue the repair process. 相似文献
11.
Processing of histone pre-mRNA requires a single 3′ endonucleolytic cleavage guided by the U7 snRNP that binds downstream of the cleavage site. Following cleavage, the downstream cleavage product (DCP) is rapidly degraded in vitro by a nuclease that also depends on the U7 snRNP. Our previous studies demonstrated that the endonucleolytic cleavage is catalyzed by the cleavage/polyadenylation factor CPSF-73. Here, by using RNA substrates with different nucleotide modifications, we characterize the activity that degrades the DCP. We show that the degradation is blocked by a 2′-O-methyl nucleotide and occurs in the 5′-to-3′ direction. The U7-dependent 5′ exonuclease activity is processive and continues degrading the DCP substrate even after complete removal of the U7-binding site. Thus, U7 snRNP is required only to initiate the degradation. UV cross-linking studies demonstrate that the DCP and its 5′-truncated version specifically interact with CPSF-73, strongly suggesting that in vitro, the same protein is responsible for the endonucleolytic cleavage of histone pre-mRNA and the subsequent degradation of the DCP. By using various RNA substrates, we define important space requirements upstream and downstream of the cleavage site that dictate whether CPSF-73 functions as an endonuclease or a 5′ exonuclease. RNA interference experiments with HeLa cells indicate that degradation of the DCP does not depend on the Xrn2 5′ exonuclease, suggesting that CPSF-73 degrades the DCP both in vitro and in vivo. 相似文献
12.
The RAD2 family of nucleases includes human XPG (Class I), FEN1 (Class II), and HEX1/hEXO1 (Class III) products gene. These proteins exhibit a blend of substrate specific exo- and endonuclease activities and contribute to repair, recombination, and/or replication. To date, the substrate preferences of the EXO1-like Class III proteins have not been thoroughly defined. We report here that the RAD2 domain of human exonuclease 1 (HEX1-N2) exhibits both a robust 5' to 3' exonuclease activity on single- and double-stranded DNA substrates as well as a flap structure-specific endonuclease activity but does not show specific endonuclease activity at 10-base pair bubble-like structures, G:T mismatches, or uracil residues. Both the 5' to 3' exonuclease and flap endonuclease activities require a divalent metal cofactor, with Mg(2+) being the preferred metal ion. HEX1-N2 is approximately 3-fold less active in Mn(2+)-containing buffers and exhibits <5% activity in the presence of Co(2+), Zn(2+), or Ca(2+). The optimal pH range for the nuclease activities of HEX1-N2 is 7.2-8.2. The specific activity of its 5' to 3' exonuclease function is 2.5-7-fold higher on blunt end and 5'-recessed double-stranded DNA substrates compared with duplex 5'-overhang or single-stranded DNAs. The flap endonuclease activity of HEX1-N2 is similar to that of human flap endonuclease-1, both in terms of turnover efficiency (k(cat)) and site of incision, and is as efficient (k(cat)/K(m)) as its exonuclease function. The nuclease activities of HEX1-N2 described here indicate functions for the EXO1-like proteins in replication, repair, and/or recombination that may overlap with human flap endonuclease-1. 相似文献
13.
AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis 下载免费PDF全文
Carpenter EP Corbett A Thomson H Adacha J Jensen K Bergeron J Kasampalidis I Exley R Winterbotham M Tang C Baldwin GS Freemont P 《The EMBO journal》2007,26(5):1363-1372
Oxidative stress is a principal cause of DNA damage, and mechanisms to repair this damage are among the most highly conserved of biological processes. Oxidative stress is also used by phagocytes to attack bacterial pathogens in defence of the host. We have identified and characterised two apurinic/apyrimidinic (AP) endonuclease paralogues in the human pathogen Neisseria meningitidis. The presence of multiple versions of DNA repair enzymes in a single organism is usually thought to reflect redundancy in activities that are essential for cellular viability. We demonstrate here that these two AP endonuclease paralogues have distinct activities in DNA repair: one is a typical Neisserial AP endonuclease (NApe), whereas the other is a specialised 3'-phosphodiesterase Neisserial exonuclease (NExo). The lack of AP endonuclease activity of NExo is shown to be attributable to the presence of a histidine side chain, blocking the abasic ribose-binding site. Both enzymes are necessary for survival of N. meningitidis under oxidative stress and during bloodstream infection. The novel functional pairing of NExo and NApe is widespread among bacteria and appears to have evolved independently on several occasions. 相似文献
14.
The mechanisms by which AP endonucleases recognize AP sites have not yet been determined. Based on our previous study with Escherichia coli exonuclease III (ExoIII), the ExoIII family AP endonucleases probably recognize the DNA-pocket formed at an AP site. The indole ring of a conserved tryptophan residue in the vicinity of the catalytic site presumably intercalates into this pocket. To test this hypothesis, we constructed a series of mutants of ExoIII and human APE1. Trp-212 of ExoIII and Trp-280 of APE1 were critical to the AP endonuclease activity and binding to DNA containing an AP site. To confirm the ability of the tryptophan residue to intercalate with the AP site, we examined the interaction between an oligopeptide containing a tryptophan residue and an oligonucleotide containing AP sites, using spectrofluorimetry and surface plasmon resonance (SPR) technology. The tryptophan residue of the oligopeptide specifically intercalated into an AP site of DNA. The tryptophan residue in the vicinity of the catalytic site of the ExoIII family AP endonucleases plays a key role in the recognition of AP sites. 相似文献
15.
《DNA Repair》2019
DNA replication fidelity maintains low mutation rates in bacteria. The ε-subunit of a replisome generally acts as the main proofreader during replication, using its 3′–5′ exonuclease activity to excise misincorporated bases thereby maintaining faithful replication. In Mycobacterium tuberculosis (Mtb), however, the polymerase and histidinol phosphatase (PHP) domain of the DNA polymerase DnaE1 is the primary proofreader. This domain thus maintains low mutation rates during replication and is an attractive target for drug development. Even though the structures of DnaE polymerases are available from various organisms, including Mtb, the mechanism of exonuclease activity remains elusive. In this study, we sought to unravel the mechanism and also to identify scaffolds that can specifically inhibit the exonuclease activity. To gain insight into the mode of action, we also characterized the PHP domain of the Mtb error-prone polymerase DnaE2 which shares a nearly identical active site with DnaE1-PHP. Kinetic and mutational studies allowed us to identify the critical residue involved in catalysis. Combined inhibition and computational studies also revealed a specific mode of inhibition of DnaE1-PHP by nucleoside diphosphates. Thus, this study lays the foundation for the rational design of novel inhibitors which target the Mtb replicative proofreader. 相似文献
16.
Thymine glycol-DNA glycosylase/AP endonuclease of CEM-C1 lymphoblasts: a human analog of Escherichia coli endonuclease III 总被引:1,自引:0,他引:1
K Lee W H McCray P W Doetsch 《Biochemical and biophysical research communications》1987,149(1):93-101
A thymine glycol-DNA glycosylase/AP endonuclease has been identified in human CEM-C1 lymphoblasts. The enzyme is active in the absence of divalent cations and has an apparent molecular size of approximately 60,000 daltons. The enzyme releases thymine glycol from osmium tetroxide-damaged DNA via an N-glycosylase activity and is associated with an endonuclease activity that mediates phosphodiester bond cleavage at sites of thymine glycol and apurinic sites. We propose that this enzyme, which we call redoxyendonuclease, is the human analog of a bacterial enzyme, E. coli endonuclease III, that recognizes oxidative DNA damage. 相似文献
17.
京津冀地区县域耕地景观多功能性评价 总被引:12,自引:0,他引:12
随着城镇化发展和农业产业化升级,耕地景观功能由单一的生产功能向经济功能、生态功能、文化功能拓展,耕地景观多功能性成为新的学术热点。已有研究往往侧重于探讨耕地功能的多指数耦合,缺乏耕地景观多重功能空间定量化与相互关联的分析。以京津冀地区为研究区,对耕地景观的粮食供给功能、生境维持功能、景观连通功能、土壤保持功能、景观美学功能和人口承载功能六项功能及其冷热点聚集区分别空间定量化,评价县域尺度耕地景观多功能性,并识别耕地景观多种功能的空间关联。研究结果表明,京津冀中部平原地区粮食供给功能显著,南部平原地区景观连通功能突出,燕山与太行山山脉土壤保持功能、维持生境功能最高,山前平原地带人口承载功能相对重要。2010年京津冀地区耕地景观功能总体呈现南高北低的分布格局,但功能高低值分布规律差异明显,各功能全部处于高值或低值的样本极少;耕地景观不同功能间的权衡与协同关系数量相当,景观连通功能与粮食供给功能呈现明显协同关系,而与土壤保持功能呈现较强权衡关联。 相似文献
18.
19.
Xue Y Ratcliff GC Wang H Davis-Searles PR Gray MD Erie DA Redinbo MR 《Biochemistry》2002,41(9):2901-2912
Werner syndrome is a rare autosomal recessive disease characterized by a premature aging phenotype, genomic instability, and a dramatically increased incidence of cancer and heart disease. Mutations in a single gene encoding a 1432-amino acid helicase/exonuclease (hWRN) have been shown to be responsible for the development of this disease. We have cloned, overexpressed, and purified a minimal, 171-amino acid fragment of hWRN that functions as an exonuclease. This fragment, encompassing residues 70-240 of hWRN (hWRN-N(70-240)), exhibits the same level of 3'-5' exonuclease activity as the previously described exonuclease fragment encompassing residues 1-333 of the full-length protein. The fragment also contains a 5'-protruding DNA strand endonuclease activity at a single-strand-double-strand DNA junction and within single-stranded DNA, as well as a 3'-5' exonuclease activity on single-stranded DNA. We find hWRN-N(70-240) is in a trimer-hexamer equilibrium in the absence of DNA when examined by gel filtration chromatography and atomic force microscopy. Upon addition of DNA substrate, hWRN-N(70-240) forms a hexamer and interacts with the recessed 3'-end of the DNA. Moreover, we find that the interaction of hWRN-N(70-240) with the replication protein PCNA also causes this minimal, 171-amino acid exonuclease region to form a hexamer. Thus, the active form of this minimal exonuclease fragment of human WRN appears to be a hexamer. The implications these results have on our understanding of hWRN's roles in DNA replication and repair are discussed. 相似文献
20.
Deoxyribonucleic acid polymerase III of Escherichia coli. Characterization of associated exonuclease activities. 总被引:1,自引:0,他引:1
Purified DNA polymerase III has two distinct exonuclease activities: one initiates hydrolsis at the 3 termini, and the other at the 5 termini of single-stranded DNA. Both exonucleases have the same relative mobility on polyacrylamide gels as the polymerase activity. Molecular identity of the three activities is further indicated by their comparative rates of thermal inactivation and their sensitivity to ionic strength. The 3-5 exonuclease activity hydrolyzes only single-standed DNA. The rate of hydrolysis is twice the optimal rate of polymerization. The products are 5-mononucleotides, but the 3-5 activity is unable to cleave free dinucleotides or the 5-terminal dinucleotide of a polydeoxynucleotide chain. The 3-5 activity will not degrade 3-phosphoryl-terminated oligonucleotides such as d(pTpTpTp). The 5-3 activity catalyzes the hydrolysis of single-stranded DNA at 1/15 the rate of the 3-5 exonuclease. The 5-3 exonuclease requires the presence of a 5 single-stranded terminus in order to initiate hydrolysis, but will thereafter proceed into a double-stranded region. Although the limit products found during hydrolysis of substrates designed to assay specifically the 5-3 activity are predominantly mono- and dinucleotides, these products probably arise from the subsequent hydrolysis of oligonucleotides by the 3-5 hydrolytic activity. This interpretation is supported by (a) the relatively greater activity of the 3-5 exonuclease, (b) the inability of the enzyme to degrade d(pTpTpTp), and (c) the release of the 5 terminus of a single-stranded DNA molecule as an oligonucleotide. The 5-3 exonuclease attacks ultraviolet-irradiated duplex DNA which has first been incised by the Micrococcus luteus endonuclease specific for thymine dimers in DNA. 相似文献