首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
3.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   

4.
Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic “single-copy orthogroup” datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. This article presents PhyloFisher, a community-driven tool for phylogenomic dataset construction to infer deep and shallow phylogenetic relationships among eukaryotes.  相似文献   

5.
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2–6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co‐occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well‐studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS‐mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.  相似文献   

6.
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait‐variation‐based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K‐values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39–83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet‐cool climates to dry‐warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between‐species variation in morphometric traits that carry lower phylogenetic signal. Between‐species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.  相似文献   

7.
Understanding how urbanization alters functional interactions among pollinators and plants is critically important given increasing anthropogenic land use and declines in pollinator populations. Pollinators often exhibit short‐term specialization and visit plants of the same species during one foraging trip. This facilitates plant receipt of conspecific pollen—pollen on a pollinator that is the same species as the plant on which the pollinator was foraging. Conspecific pollen receipt facilitates plant reproductive success and is thus important to plant and pollinator persistence. We investigated how urbanization affects short‐term specialization of insect pollinators by examining pollen loads on insects’ bodies and identifying the number and species of pollen grains on insects caught in urban habitat fragments and natural areas. We assessed possible drivers of differences between urban and natural areas, including frequency dependence in foraging, species richness and diversity of the plant and pollinator communities, floral abundance, and the presence of invasive plant species. Pollinators were more specialized in urban fragments than in natural areas, despite no differences in the species richness of plant communities across site types. These differences were likely driven by higher specialization of common pollinators, which were more abundant in urban sites. In addition, pollinators preferred to forage on invasive plants at urban sites and native plants at natural sites. Our findings reveal indirect effects of urbanization on pollinator fidelity to individual plant species and have implications for the maintenance of plant species diversity in small habitat fragments. Higher preference of pollinators for invasive plants at urban sites suggests that native species may receive fewer visits by pollinators. Therefore, native plant species diversity may decline in urban sites without continued augmentation of urban flora or removal of invasive species.  相似文献   

8.
The Membranome database provides comprehensive structural information on single‐pass (i.e., bitopic) membrane proteins from six evolutionarily distant organisms, including protein–protein interactions, complexes, mutations, experimental structures, and models of transmembrane α‐helical dimers. We present a new version of this database, Membranome 3.0, which was significantly updated by revising the set of 5,758 bitopic proteins and incorporating models generated by AlphaFold 2 in the database. The AlphaFold models were parsed into structural domains located at the different membrane sides, modified to exclude low‐confidence unstructured terminal regions and signal sequences, validated through comparison with available experimental structures, and positioned with respect to membrane boundaries. Membranome 3.0 was re‐developed to facilitate visualization and comparative analysis of multiple 3D structures of proteins that belong to a specified family, complex, biological pathway, or membrane type. New tools for advanced search and analysis of proteins, their interactions, complexes, and mutations were included. The database is freely accessible at https://membranome.org.  相似文献   

9.
Enzymes are critical proteins in every organism. They speed up essential chemical reactions, help fight diseases, and have a wide use in the pharmaceutical and manufacturing industries. Wet lab experiments to figure out an enzyme''s function are time consuming and expensive. Therefore, the need for computational approaches to address this problem are becoming necessary. Usually, an enzyme is extremely specific in performing its function. However, there exist enzymes that can perform multiple functions. A multi‐functional enzyme has vast potential as it reduces the need to discover/use different enzymes for different functions. We propose an approach to predict a multi‐functional enzyme''s function up to the most specific fourth level of the hierarchy of the Enzyme Commission (EC) number. Previous studies can only predict the function of the enzyme till level 1. Using a dataset of 2,583 multi‐functional enzymes, we achieved a hierarchical subset accuracy of 71.4% and a Macro F1 Score of 96.1% at the fourth level. The robustness of the network was further tested on a multi‐functional isoforms dataset. Our method is broadly applicable and may be used to discover better enzymes. The web‐server can be freely accessed at http://hecnet.cbrlab.org/.  相似文献   

10.
Rapidly improving high-throughput sequencing technologies provide unprecedented opportunities for carrying out population-genomic studies with various organisms. To take full advantage of these methods, it is essential to correctly estimate allele and genotype frequencies, and here we present a maximum-likelihood method that accomplishes these tasks. The proposed method fully accounts for uncertainties resulting from sequencing errors and biparental chromosome sampling and yields essentially unbiased estimates with minimal sampling variances with moderately high depths of coverage regardless of a mating system and structure of the population. Moreover, we have developed statistical tests for examining the significance of polymorphisms and their genotypic deviations from Hardy–Weinberg equilibrium. We examine the performance of the proposed method by computer simulations and apply it to low-coverage human data generated by high-throughput sequencing. The results show that the proposed method improves our ability to carry out population-genomic analyses in important ways. The software package of the proposed method is freely available from https://github.com/Takahiro-Maruki/Package-GFE.  相似文献   

11.

Background

Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using de novo approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest.

Results

Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and de novo approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 – 110 million years divergent from the reference taxon. The gene recovery was between 97 – 99% from each taxon.

Conclusions

aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available http://www.github.com/juliema/aTRAM.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0515-2) contains supplementary material, which is available to authorized users.  相似文献   

12.
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
This is PLOS Computational Biology software paper.
  相似文献   

13.
Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low‐quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.  相似文献   

14.
We modeled 3D structures of all SARS‐CoV‐2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post‐translational modifications, block host translation, and disable host defenses; a further ˜29% self‐assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is—and is not—known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria‐COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.  相似文献   

15.
The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease.Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: rf.uma-vinu@toduab.siana  相似文献   

16.
The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS‐CoV‐2 virus protein structures in the PDB. These include the variants of concern, which are shown both on the sequences and 3D structures of the proteins. The second addition is the inclusion of the available AlphaFold models for human proteins. The pages allow a search of the protein against existing structures in the PDB via the Sequence Annotated by Structure (SAS) server, so one can easily compare the predicted model against experimentally determined structures. The server is freely accessible to all at http://www.ebi.ac.uk/pdbsum.  相似文献   

17.
Evolutionary conservation is a fundamental resource for predicting the substitutability of amino acids and the loss of function in proteins. The use of multiple sequence alignment alone—without considering the evolutionary relationships among sequences—results in the redundant counting of evolutionarily related alteration events, as if they were independent. Here, we propose a new method, PHACT, that predicts the pathogenicity of missense mutations directly from the phylogenetic tree of proteins. PHACT travels through the nodes of the phylogenetic tree and evaluates the deleteriousness of a substitution based on the probability differences of ancestral amino acids between neighboring nodes in the tree. Moreover, PHACT assigns weights to each node in the tree based on their distance to the query organism. For each potential amino acid substitution, the algorithm generates a score that is used to calculate the effect of substitution on protein function. To analyze the predictive performance of PHACT, we performed various experiments over the subsets of two datasets that include 3,023 proteins and 61,662 variants in total. The experiments demonstrated that our method outperformed the widely used pathogenicity prediction tools (i.e., SIFT and PolyPhen-2) and achieved a better predictive performance than other conventional statistical approaches presented in dbNSFP. The PHACT source code is available at https://github.com/CompGenomeLab/PHACT.  相似文献   

18.
Sex is evolutionarily more costly than parthenogenesis, evolutionary ecologists therefore wonder why sex is much more frequent than parthenogenesis in the majority of animal lineages. Intriguingly, parthenogenetic individuals and species are as common as or even more common than sexuals in some major and putative ancient animal lineages such as oribatid mites and rotifers. Here, we analyzed oribatid mites (Acari: Oribatida) as a model group because these mites are ancient (early Paleozoic), widely distributed around the globe, and include a high number of parthenogenetic species, which often co‐exist with sexual oribatid mite species. There is evidence that the reproductive mode is phylogenetically conserved in oribatid mites, which makes them an ideal model to test hypotheses on the relationship between reproductive mode and species'' ecological strategies. We used oribatid mites to test the frozen niche variation hypothesis; we hypothesized that parthenogenetic oribatid mites occupy narrow specialized ecological niches. We used the geographic range of species as a proxy for specialization as specialized species typically do have narrower geographic ranges than generalistic species. After correcting for phylogenetic signal in reproductive mode and demonstrating that geographic range size has no phylogenetic signal, we found that parthenogenetic lineages have a higher probability to have broader geographic ranges than sexual species arguing against the frozen niche variation hypothesis. Rather, the results suggest that parthenogenetic oribatid mite species are more generalistic than sexual species supporting the general‐purpose genotype hypothesis. The reason why parthenogenetic oribatid mite species are generalists with wide geographic range sizes might be that they are of ancient origin reflecting that they adapted to varying environmental conditions during evolutionary history. Overall, our findings indicate that parthenogenetic oribatid mite species possess a widely adapted general‐purpose genotype and therefore might be viewed as “Jack‐of‐all‐trades.”  相似文献   

19.
Circular dichroism (CD) spectroscopy is a widely‐used method for characterizing the secondary structures of proteins. The well‐established and highly used analysis website, DichroWeb (located at: http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) enables the facile quantitative determination of helix, sheet, and other secondary structure contents of proteins based on their CD spectra. DichroWeb includes a range of reference datasets and algorithms, plus graphical and quantitative methods for determining the quality of the analyses produced. This article describes the current website content, usage and accessibility, as well as the many upgraded features now present in this highly popular tool that was originally created nearly two decades ago.  相似文献   

20.
  1. DNA metabarcoding is an emerging tool used to quantify diet in environments and consumer groups where traditional approaches are unviable, including small‐bodied invertebrate taxa. However, metabarcoding of small taxa often requires DNA extraction from full body parts (without dissection), and it is unclear whether surface contamination from body parts alters presumed diet presence or diversity.
  2. We examined four different measures of diet (presence, rarefied read abundance, richness, and species composition) for a terrestrial invertebrate consumer (the spider Heteropoda venatoria) both collected in its natural environment and fed an offered diet item in contained feeding trials using DNA metabarcoding of full body parts (opisthosomas). We compared diet from consumer individuals surface sterilized to remove contaminants in 10% commercial bleach solution followed by deionized water with a set of unsterilized individuals.
  3. We found that surface sterilization did not significantly alter any measure of diet for consumers in either a natural environment or feeding trials. The best‐fitting model predicting diet detection in feeding trial consumers included surface sterilization, but this term was not statistically significant (β = −2.3, p‐value = .07).
  4. Our results suggest that surface contamination does not seem to be a significant concern in this DNA diet metabarcoding study for consumers in either a natural terrestrial environment or feeding trials. As the field of diet DNA metabarcoding continues to progress into new environmental contexts with various molecular approaches, we suggest ongoing context‐specific consideration of the possibility of surface contamination.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号