首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using fluorescence in situ hybridization, we determined the ploidy of four species of Leishmania: Leishmania infantum, Leishmania donovani, Leishmania tropica and Leishmania amazonensis. We found that each cell in a strain possesses a combination of mono-, di- and trisomies for all chromosomes; ploidy patterns were different among all strains/species. These results extend those we previously described in Leishmania major, demonstrating that mosaic aneuploidy is a genetic feature widespread to the Leishmania genus. In addition to the genetic consequences induced by this mosaicism, the apparent absence of alternation between haploid/diploid stages questions the modality of genetic exchange in Leishmania sp.  相似文献   

2.
Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes.  相似文献   

3.
Antimonials remain the first line drug against the protozoan parasite Leishmania but their efficacy is threatened by resistance. We carried out a RNA expression profiling analysis comparing an antimony-sensitive and -resistant (Sb2000.1) strain of Leishmania infantum using whole-genome 70-mer oligonucleotide microarrays. Several genes were differentially expressed between the two strains, several of which were found to be physically linked in the genome. MRPA, an ATP-binding cassette (ABC) gene known to be involved in antimony resistance, was overexpressed in the antimony-resistant mutant along with three other tandemly linked genes on chromosome 23. This four gene locus was flanked by 1.4 kb repeated sequences from which an extrachromosomal circular amplicon was generated in the resistant cells. Interestingly, gene expression modulation of entire chromosomes occurred in the antimony-resistant mutant. Southern blots analyses and comparative genomic hybridizations revealed that this was either due to the presence of supernumerary chromosomes or to the loss of one chromosome. Leishmania parasites with haploid chromosomes were viable. Changes in copy number for some of these chromosomes were confirmed in another antimony-resistant strain. Selection of a partial revertant line correlated antimomy resistance levels and the copy number of aneuploid chromosomes, suggesting a putative link between aneuploidy and drug resistance in Leishmania.  相似文献   

4.
Hollandichthys is a fish genus of the family Characidae that was until recently considered to be monotypic, with cytogenetic, morphological, and molecular data being restricted to a few local populations. In the present study, the karyotype of a population of Hollandichthys multifasciatus was analyzed using classical and molecular cytogenetic approaches for the investigation of potential markers that could provide new perspectives on the cytotaxonomy. H. multifasciatus presented a diploid number of 2n=50 chromosomes and a karyotype formula of 8m+10sm+32st. A single pair of chromosomes presented Ag-NORs signals, which coincided with the 18S rDNA sites visualized by FISH, whilst the 5S rDNA sequences were mapped in two chromosome pairs. The distribution of the U snRNA genes was mapped on the Hollandichthys chromosomes for the first time, with the probes revealing the presence of the U1 snDNA on the chromosomes of pair 20, U2 on pairs 6 and 19, U4 on pair 16, and U6 on the chromosomes of pair 11. The results of the present study indicated karyotypic differences in comparison with the other populations of H. multifasciatus studied previously, reinforcing the need for further research to identify isolated populations or the potential existence of cryptic Hollandichthys species.  相似文献   

5.

Background

Mesenchyme-derived airway cell populations including airway smooth muscle (ASM) cells, fibroblasts and myofibroblasts play key roles in the pathogenesis of airway inflammation and remodeling. Phenotypic and functional characterisation of these cell populations are confounded by their heterogeneity in vitro. It is unclear which mechanisms underlie the creation of these different sub-populations.The study objectives were to investigate whether ASM cells are capable of clonal expansion and if so (i) what proportion possess this capability and (ii) do clonal populations exhibit variation in terms of morphology, phenotype, proliferation rates and pro-relaxant or pro-contractile signaling pathways.

Methods

Early passage human ASM cells were subjected to single-cell cloning and their doubling time was recorded. Immunocytochemistry was performed to assess localization and levels of markers previously reported to be specifically associated with smooth muscle or fibroblasts. Finally functional assays were used to reveal differences between clonal populations specifically assessing mitogen-induced proliferation and pro-relaxant and pro-contractile signaling pathways.

Results

Our studies provide evidence that a high proportion (58%) of single cells present within early passage human ASM cell cultures have the potential to create expanded cell populations. Despite being clonally-originated, morphological heterogeneity was still evident within these clonal populations as assessed by the range in expression of markers associated with smooth muscle cells. Functional diversity was observed between clonal populations with 10 μM isoproterenol-induced cyclic AMP responses ranging from 1.4 - 5.4 fold cf basal and bradykinin-induced inositol phosphate from 1.8 - 5.2 fold cf basal.

Conclusion

In summary we show for the first time that primary human ASM cells are capable of clonal expansion and that the resulting clonal populations themselves exhibit phenotypic plasticity.  相似文献   

6.
Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process.  相似文献   

7.
Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmaniain wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruziwere dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite.  相似文献   

8.

Background

The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines.

Methodology/Principal Findings

Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import.

Conclusion/Significance

This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania.  相似文献   

9.
10.
Leishmania are unicellular eukaryotes that have many markedly original molecular features compared with other uni‐ or multicellular eukaryotes like yeasts or mammals. Genome plasticity in this parasite has been the subject of many publications, and has been associated with drug resistance or adaptability. Aneuploidy has been suspected by several authors and it is now confirmed using state‐of‐the‐art technologies such as high‐throughput DNA sequencing. The analysis of genome contents at the single cell level using fluorescence in situ hybridization (FISH) has brought a new light on the genome organization: within a cell population, every chromosome, in every cell, may be present in at least two ploidy states (being either monosomic, disomic or trisomic), and the chromosomal content varies greatly from cell to cell, thus generating a constitutive intra‐strain genomic heterogeneity, here termed ‘mosaic aneuploidy’. Mosaic aneuploidy deeply affects the genetics of these organisms, leading, for example, to an extreme degree of intra‐strain genomic diversity, as well as to a clearance of heterozygous cells in the population without however affecting genetic heterogeneity. Second, mosaic aneuploidy might be considered as a powerful strategy evolved by the parasite for adapting to modifications of environment conditions as well as for the emergence of drug resistance. On the whole, mosaic aneuploidy may be considered as a novel mechanism for generating phenotypic diversity driven by genomic plasticity.  相似文献   

11.
Erianthus arundinaceus is a valuable source of agronomic traits for sugarcane improvement such as ratoonability, biomass, vigor, tolerance to drought and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane, five intergeneric F1 hybrids between S. officinarum and E. arundinaceus and 13 of their BC1 progeny were studied using the genomic in situ hybridization (GISH) technique. In doing so, we assessed the chromosome composition and chromosome transmission in these plants. All F1 hybrids were aneuploidy, containing either 28 or 29 E. arundinaceus chromosomes. The number of E. arundinaceus chromosomes in nine of the BC1 progeny was less than or equal to 29. Unexpectedly, the number of E. arundinaceus chromosomes in the other four BC1 progeny was above 29, which was more than in their F1 female parents. This is the first cytogenetic evidence for an unexpected inheritance pattern of E. arundinaceus chromosomes in sugarcane. We pointed to several mechanisms that may be involved in generating more than 2n gametes in the BC1 progeny. Furthermore, the implication of these results for sugarcane breeding programs was discussed.  相似文献   

12.
《Gene》1998,222(1):107-117
The genus Leishmania can be taxonomically separated into three main groups: the Old World subgenus L. (Leishmania), the New World subgenus L. (Leishmania) and the New World subgenus L. (Viannia). The haploid genome of Old World Leishmania species has been shown to contain 36 chromosomes defined as physical linkage groups; the latter were found entirely conserved across species. In the present study, we tried to verify whether this conservation of the genome structure extends to the New World species of Leishmania. 300 loci were explored by hybridization on optimized pulsed field gel electrophoresis separations of the chromosomes of polymorphic strains of the six main pathogenic Leishmania species of the New World. When comparing these New World karyotypes with their Old World counterparts, 32 out of 36 linkage groups were found conserved among all species. Four chromosomal rearrangements were found. All species belonging to the L. (Viannia) subgenus were characterized by the presence (i) of a short sequence exchange between chromosomes 26 and 35, and (ii) more importantly, of a fused version of chromosomes 20 and 34 which are separated in all Old World species. 69 additional markers were isolated from a plasmid library specifically constructed from the rearranged chromosomes 20+34 in an attempt to detect mechanisms other than a fusion or breakage: only two markers out of 40 did not belong to the linkage groups 20 and 34. On the other hand, all strains belonging to the New World subgenus L. (Leishmania) were characterized by two different chromosomal rearrangements of the same type (fusion/breakage) as above as compared with Old World species: chromosomes 8+29 and 20+36. Consequently, these two groups of species have 35 and 34 heterologous chromosomes, respectively. Overall, these results show that large-scale chromosomal rearrangements occurred during the evolution of the genus Leishmania, and that the three main groups of pathogenic species are characterized by different chromosome numbers. Nevertheless, translocations seem particularly rare, and the conservation of the major linkage groups should be an essential feature for the compared genetics between species of this parasite.  相似文献   

13.
Knowledge of population-level genetic differences can help explain variation among populations of insect vectors in their role in the epidemiology of specific viruses. Variation in competency to transmit Tomato spotted wilt virus (TSWV) that exists among populations of Thrips tabaci has been associated with the presence of cryptic species that exhibit different modes of reproduction and host ranges. However, recent findings suggest that vector competency of T. tabaci at any given location depends on the thrips and virus populations that are present. This study characterizes the population genetic structure of T. tabaci collected from four locations in North Carolina and examines the relationship between population genetic structure and variation in TSWV transmission by T. tabaci. Mitochondrial COI sequence analysis revealed the presence of two genetically distinct groups with one characterized by thelytokous, parthenogenetic reproduction and the other by arrhenotokous, sexual reproduction. Using a set of 11 microsatellite markers that we developed to investigate T. tabaci population genetic structure, we identified 17 clonal groups and found significant genetic structuring among the four NC populations that corresponded to the geographic locations where the populations were collected. Application of microsatellite markers also led to the discovery of polyploidy in this species. All four populations contained tetraploid individuals, and three contained both diploid and tetraploid individuals. Analysis of variation in transmission ofTSWV among isofemale lines initiated with individuals used in this study revealed that ‘clone assignment,’ ‘virus isolate’ and their interaction significantly influenced vector competency. These results highlight the importance of interactions between specific T. tabaci clonal types and specific TSWV isolates underlying transmission of TSWV by T. tabaci.  相似文献   

14.
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.  相似文献   

15.
Invertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural (Phlebotomus duboscqi) and unnatural (Lutzomyia longipalpis) sand fly vectors. Following co-infection of flies with parental lines bearing independent drug markers, doubly-drug resistant hybrid progeny were selected, from which 96 clonal lines were analyzed for DNA content and genotyped for parent alleles at 4–6 unlinked nuclear loci as well as the maxicircle DNA. As seen previously, the majority of hybrids showed ‘2n’ DNA contents, but with a significant number of ‘3n’ and one ‘4n’ offspring. In the natural vector, 97% of the nuclear loci showed both parental alleles; however, 3% (4/150) showed only one parental allele. In the unnatural vector, the frequency of uniparental inheritance rose to 10% (27/275). We attribute this to loss of heterozygosity after mating, most likely arising from aneuploidy which is both common and temporally variable in Leishmania. As seen previously, only uniparental inheritance of maxicircle kDNA was observed. Hybrids were recovered at similar efficiencies in all pairwise crosses tested, suggesting that L. major lacks detectable ‘mating types’ that limit free genetic exchange. In the natural vector, comparisons of the timing of hybrid formation with the presence of developmental stages suggest nectomonads as the most likely sexually competent stage, with hybrids emerging well before the first appearance of metacyclic promastigotes. These studies provide an important perspective on the prevalence of genetic exchange in natural populations of L. major and a guide for experimental studies to understand the biology of mating.  相似文献   

16.
With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep.  相似文献   

17.
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.  相似文献   

18.
B chromosomes are non-essential additional genomic elements present in several animal and plant species. In fishes, species of the genus Psalidodon (Characiformes, Characidae) harbor great karyotype diversity, and multiple populations carry different types of non-essential B chromosomes. This study analyzed how the dispensable supernumerary B chromosome of Psalidodon paranae behaves during meiosis to overcome checkpoints and express its own meiosis-specific genes. We visualized the synaptonemal complexes of P. paranae individuals with zero, one, or two B chromosomes using immunodetection with anti-medaka SYCP3 antibody and fluorescence in situ hybridization with a (CA)15 microsatellite probe. Our results showed that B chromosomes self-pair in cells containing only one B chromosome. In cells with two identical B chromosomes, these elements remain as separate synaptonemal complexes or close self-paired elements in the nucleus territory. Overall, we reveal that B chromosomes can escape meiotic silencing of unsynapsed chromatin through a self-pairing process, allowing expression of their own genes to facilitate regular meiosis resulting in fertile individuals. This behavior, also seen in other congeneric species, might be related to their maintenance throughout the evolutionary history of Psalidodon.  相似文献   

19.
Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle.  相似文献   

20.
The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号