首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenotypic space encompasses the assemblage of trait combinations yielding well‐suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among‐ and within‐population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among‐population divergence but high among‐individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among‐individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine‐tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed‐related traits advancing flowering time.  相似文献   

2.
Premise of the studyAs global climate change alters drought regimes, rapid evolution of traits that facilitate adaptation to drought can rescue populations in decline. The evolution of phenological advancement can allow plant populations to escape drought, but evolutionary responses in phenology can vary across a species'' range due to differences in drought intensity and standing genetic variation.Methods Mimulus cardinalis, a perennial herb spanning a broad climatic gradient, recently experienced a period of record drought. Here, we used a resurrection study comparing flowering time and stem height at first flower of pre‐drought ancestors and post‐drought descendants from northern‐edge, central, and southern‐edge populations in a common environment to examine the evolution of drought escape across the latitudinal range.Key resultsContrary to the hypothesis of the evolution of advanced phenology in response to recent drought, flowering time did not advance between ancestors and descendants in any population, though storage condition and maternal effects could have impacted these results. Stem height was positively correlated with flowering time, such that plants that flowered earlier were shorter at first flower. This correlation could constrain the evolution of earlier flowering time if selection favors flowering early at a large size.ConclusionsThese findings suggest that rapid evolution of phenology will not rescue these populations from recent climate change. Future work is needed to examine the potential for the evolution of alternative drought strategies and phenotypic plasticity to buffer M. cardinalis populations from changing climate.  相似文献   

3.
A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.  相似文献   

4.
Floral gender in angiosperms often varies within and among populations. We conducted a field survey to test how predispersal seed predation affects sex allocation in an andromonoecious alpine herb Peucedanum multivittatum. We compared plant size, male and perfect flower production, fruit set, and seed predation rate over three years among nine populations inhabiting diverse snowmelt conditions in alpine meadows. Flowering period of individual populations varied from mid‐July to late August reflecting the snowmelt time. Although perfect flower and fruit productions increased with plant size, size dependency of male flower production was less clear. The number of male flowers was larger in the early‐flowering populations, while the number of perfect flowers increased in the late‐flowering populations. Thus, male‐biased sex allocation was common in the early‐flowering populations. Fruit‐set rates varied among populations and between years, irrespective of flowering period. Fruit‐set success of individual plants increased with perfect flower number, but independent of male flower number. Seed predation by lepidopteran larvae was intense in the early‐flowering populations, whereas predation damage was absent in the late‐flowering populations, reflecting the extent of phenological matching between flowering time of host plants and oviposition period of predator moths. Seed predation rate was independent of male and perfect flower numbers of individual plants. Thus, seed predation is a stochastic event in each population. There was a clear correlation between the proportion of male flowers and the intensity of seed predation among populations. These results suggest that male‐biased sex allocation could be a strategy to reduce seed predation damage but maintain the effort as a pollen donor under intensive seed predation.  相似文献   

5.

Background and aims

Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change.

Methods

The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972–2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset.

Key Results

A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (<20 %). Prolonged exposure at higher humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33–55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change.

Conclusions

Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic approach to modelling this variation in population studies. Forecast changes in climate have the potential to alter the seed bank dynamics of species with physical dormancy regulated by this mechanism, with implications for their capacity to delay germination and exploit windows for recruitment.  相似文献   

6.
Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population‐level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native‐range counterparts. Temperature of a population''s origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness‐related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals’ life for perennial herbs.  相似文献   

7.

Background and Aims

Seed dormancy varies within species in response to climate, both in the long term (through ecotypes or clines) and in the short term (through the influence of the seed maturation environment). Disentangling both processes is crucial to understand plant adaptation to environmental changes. In this study, the local patterns of seed dormancy were investigated in a narrow endemic species, Centaurium somedanum, in order to determine the influence of the seed maturation environment, population genetic composition and climate.

Methods

Laboratory germination experiments were performed to measure dormancy in (1) seeds collected from different wild populations along a local altitudinal gradient and (2) seeds of a subsequent generation produced in a common garden. The genetic composition of the original populations was characterized using intersimple sequence repeat (ISSR) PCR and principal co-ordinate analysis (PCoA), and its correlation with the dormancy patterns of both generations was analysed. The effect of the local climate on dormancy was also modelled.

Key Results

An altitudinal dormancy cline was found in the wild populations, which was maintained by the plants grown in the common garden. However, seeds from the common garden responded better to stratification, and their release from dormancy was more intense. The patterns of dormancy variation were correlated with genetic composition, whereas lower temperature and summer precipitation at the population sites predicted higher dormancy in the seeds of both generations.

Conclusions

The dormancy cline in C. somedanum is related to a local climatic gradient and also corresponds to genetic differentiation among populations. This cline is further affected by the weather conditions during seed maturation, which influence the receptiveness to dormancy-breaking factors. These results show that dormancy is influenced by both long-and short-term climatic variation. Such processes at such a reduced spatial scale highlight the potential of plants to adapt to fast environmental changes.  相似文献   

8.
Background and AimsSeed dormancy determines the environmental niche of plants in seasonal environments, and has consequences for plant performance that potentially go far beyond the seed and seedling stages. In this study, we examined the cascading effects of seed dormancy on the expression of subsequent life-history traits and fitness in the annual herb Arabidopsis thaliana.MethodsWe planted seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified the relationship between primary seed dormancy and the expression of subsequent life-history traits and fitness in the RIL population with path analysis. To examine the effects of differences in dormancy on the relative fitness of the two parental genotypes, we planted dormant seeds during the seed dispersal period and non-dormant seeds during the germination period of the local population.Key ResultsIn the RIL population, strong primary dormancy was associated with high seedling survival, but with low adult survival and fecundity, and path analysis indicated that this could be explained by effects on germination timing, rosette size and flowering start. The relationship between primary seed dormancy and germination proportion varied among years, and this was associated with differences in seasonal changes in soil moisture. The planting of dormant and non-dormant seeds indicated that the lower primary dormancy of the local Swedish genotype contributed to its higher germination proportion in two years and to its higher fecundity in one year.ConclusionsOur results show that seed dormancy affects trait expression and fitness components across the life cycle, and suggest that among-year variation in the incidence of drought during the germination period should be considered when predicting the consequences of climatic change for population growth and evolution.  相似文献   

9.
Background and AimsIn Mediterranean ecosystems, the heat shock of wildfire disrupts physical seed dormancy in many plant species. This triggers germination in the post-fire environment where seedling establishment is optimal due to decreased competition and increased resource availability. However, to maintain the soil seed bank until a fire occurs, the minimum heat capable of breaking seed dormancy (i.e. the lower heat threshold) must be above the maximum temperatures typically observed in the soil during the summer. We therefore hypothesized that summer temperatures have shaped heat requirements for physical dormancy release. Specifically, we predicted that seeds from populations growing under warmer summers will have higher values of the lower heat threshold.MethodsTo evaluate this prediction, we collected seeds from two Cistus species in 31 populations (20 Cistus albidus and 11 Cistus salviifolius) along a climate gradient of summer temperatures on the eastern coast of Spain. For each population, seeds were treated to 10 min heat shocks, from 30 to 120 °C in 5 °C increments (19 treatments), to simulate increasing heat doses from summer to fire-related temperatures. Seeds were then germinated in the lab.Key ResultsFor all populations, maximum germination was observed when applying temperatures associated with fire. Lower heat thresholds varied among populations, with a positive relationship between summer temperatures at seed population origin and the heat dose required to break dormancy.ConclusionsOur results suggest that fire drives maximum dormancy release for successful post-fire germination, while summer temperatures determine lower heat thresholds for ensuring inter-fire seed bank persistence. Significant among-population variation of thresholds also suggests that post-fire seeder species have some potential to modify their dormancy release requirements in response to changing climate.  相似文献   

10.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

11.

Background and Aims

Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles.

Methods

Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction.

Key Results

Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles.

Conclusions

Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs.  相似文献   

12.
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait‐variation‐based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K‐values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39–83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet‐cool climates to dry‐warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between‐species variation in morphometric traits that carry lower phylogenetic signal. Between‐species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.  相似文献   

13.
Medium‐to‐high elevation grasslands provide critical services in agriculture and ecosystem stabilization, through high biodiversity and providing food for wildlife. However, these ecosystems face elevated risks of disruption due to predicted soil and climate changes. Separating the effects of soil and climate, however, is difficult in situ, with previous experiments focusing largely on monocultures instead of natural grassland communities. We experimentally exposed model grassland communities, comprised of three species grown on either local or reference soil, to varied climatic environments along an elevational gradient in the European Alps, measuring the effects on species and community traits. Although species‐specific biomass varied across soil and climate, species'' proportional contributions to community‐level biomass production remained consistent. Where species experienced low survivorship, species‐level biomass production was maintained through increased productivity of surviving individuals; however, maximum species‐level biomass was obtained under high survivorship. Species responded directionally to climatic variation, spatially separating differentially by plant traits (including height, reproduction, biomass, survival, leaf dry weight, and leaf area) consistently across all climates. Local soil variation drove stochastic trait responses across all species, with high levels of interactions occurring between site and species. This soil variability obscured climate‐driven responses: we recorded no directional trait responses for soil‐corrected traits like observed for climate‐corrected traits. Our species‐based approach contributes to our understanding of grassland community stabilization and suggests that these communities show some stability under climatic variation.  相似文献   

14.
Anthropogenic climate change poses a substantial challenge to many organisms, to which they need to respond to avoid fitness reductions. Investigating responses to environmental change is particularly interesting in herbivores, as they are potentially affected by indirect effects mediated via variation in host‐plant quality. We here use the herbivorous insect Pieris napi to investigate geographic variation in the response to variation in food quality. We performed a common garden experiment using replicated populations from Germany and Italy, and manipulated host quality by growing host plants at different temperature and water regimes. We found that feeding on plants grown at a higher temperature generally diminished the performance of P. napi, evidenced by a prolonged development time and reduced larval growth rate, body mass, fat content, and phenoloxidase activity. Genotype by environment interactions (G × E) were present in several performance traits, indicating that Italian populations (1) respond more strongly to variation in host‐plant quality and (2) are more sensitive to poor food quality than German ones. This may reflect a cost of the rapid lifestyle found in Italian populations. Consequently, German populations may be more resilient against environmental perturbations and may perhaps even benefit from warmer temperatures, while Italian populations will likely suffer from the concomitantly reduced host‐plant quality. Our study thus exemplifies how investigating G × E may help to better understand the vulnerability of populations to climate change.  相似文献   

15.
16.
How populations of long‐living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre‐adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range‐wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness‐related traits could show similar adaptation lag patterns.  相似文献   

17.
The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent‐based modeling. The model is developed for Bombus sp. and captures within‐season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature‐dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within‐season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi‐natural habitats and early and late flowering crops) on bumblebee populations.  相似文献   

18.
Freshwater ecosystems are negatively impacted by a variety of anthropogenic stressors, with concomitant elevated rates of population decline for freshwater aquatic vertebrates. Because reductions in population size and extent can negatively impact genetic diversity and gene flow, which are vital for sustained local adaptation, it is important to measure these characteristics in threatened species that may yet be rescued from extinction. Across its native range, Bull Trout (Salvelinus confluentus) extent and abundance are in decline due to historic overharvest, invasive non‐native species, and habitat loss. In Alberta''s Eastern Slope region, populations at the range margin have progressively been lost, motivating us to better understand the amount and distribution of genetic variation in headwater habitats and some downstream sites where they continue to persist. Across this region, we sampled 431 Bull Trout from 20 sites in the Athabasca and Saskatchewan River basins and assayed 10 microsatellite loci to characterize within‐ and among‐population genetic variation. The Saskatchewan and Athabasca River basins contained similar levels of heterozygosity but were differentiated from one another. Within the Athabasca River basin, five genetically differentiated clusters were found. Despite the evidence for genetic differentiation, we did not observe significant isolation‐by‐distance patterns among these sites. Our findings of ample genetic diversity and no evidence for hybridization with non‐native Brook Trout in headwater habitats provide motivation to ameliorate downstream habitats and remove anthropogenic barriers to connectivity towards the goal of long‐term persistence of this species.  相似文献   

19.
Population translocations occur for a variety of reasons, from displacement due to climate change to human‐induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole‐genome sequencing of pooled DNA (Pool‐seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool‐seq can be used as an initial tool to monitor genome‐wide effects.  相似文献   

20.
The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental–phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号