首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylcinnamate, which is widely distributed throughout the plant kingdom, is a significant component of many floral scents and an important signaling molecule between plants and insects. Comparison of an EST database obtained from the glandular trichomes of a basil (Ocimum basilicum) variety that produces high levels of methylcinnamate (line MC) with other varieties producing little or no methylcinnamate identified several very closely related genes belonging to the SABATH family of carboxyl methyltransferases that are highly and almost exclusively expressed in line MC. Biochemical characterization of the corresponding recombinant proteins showed that cinnamate and p-coumarate are their best substrates for methylation, thus designating these enzymes as cinnamate/p-coumarate carboxyl methyltransferases (CCMTs). Gene expression, enzyme activity, protein profiling, and metabolite content analyses demonstrated that CCMTs are responsible for the formation of methylcinnamate in sweet basil. A phylogenetic analysis of the entire SABATH family placed these CCMTs into a clade that includes indole-3-acetic acid carboxyl methyltransferases and a large number of uncharacterized carboxyl methyltransferase-like proteins from monocots and lower plants. Structural modeling and ligand docking suggested active site residues that appear to contribute to the substrate preference of CCMTs relative to other members of the SABATH family. Site-directed mutagenesis of specific residues confirmed these findings.  相似文献   

2.
We used a combined evolutionary and experimental approach tobetter understand enzyme functional divergence within the SABATHgene family of methyltransferases (MTs). These enzymes catalyzethe formation of a variety of secondary metabolites in plants,many of which are volatiles that contribute to floral scentand plant defense such as methyl salicylate and methyl jasmonate.A phylogenetic analysis of functionally characterized membersof this family showed that salicylic acid methyltransferase(SAMT) forms a monophyletic lineage of sequences found in severalflowering plants. Most members of this lineage preferentiallymethylate salicylic acid (SA) as compared with the structurallysimilar substrate benzoic acid (BA). To investigate if positiveselection promoted functional divergence of this lineage ofenzymes, we performed a branch-sites test. This test showedstatistically significant support (P < 0.05) for positiveselection in this lineage of MTs (dN/dS = 10.8). A high posteriorprobability (pp = 0.99) identified an active site methionineas the only site under positive selection in this lineage. Toinvestigate the potential catalytic effect of this positivelyselected codon, site-directed mutagenesis was used to replaceMet with the alternative amino acid (His) in a Datura wrightiifloral–expressed SAMT sequence. Heterologous expressionof wild-type and mutant D. wrightii SAMT in Escherichia colishowed that both enzymes could convert SA to methyl salicylateand BA to methyl benzoate. However, competitive feeding withequimolar amounts of SA and BA showed that the presence of Metin the active site of wild-type SAMT resulted in a >10-foldhigher amount of methyl salicylate produced relative to methylbenzoate. The Met156His-mutant exhibited little differentialpreference for the 2 substrates because nearly equal amountsof methyl salicylate and methyl benzoate were produced. Evolutionof the ability to discriminate between the 2 substrates by SAMTmay be advantageous for efficient production of methyl salicylate,which is important for pollinator attraction as well as pathogenand herbivore defense. Because BA is a likely precursor forthe biosynthesis of SA, SAMT might increase methyl salicylatelevels directly by preferential methylation and indirectly byleaving more BA to be converted into SA.  相似文献   

3.
4.
We recently reported that aspartate (Asp) biosynthesis in plant chloroplasts is catalyzed by two different Asp aminotransferases (AAT): a previously characterized eukaryote type and a prokaryote type (PT-AAT) similar to bacterial and archaebacterial enzymes. The available molecular and kinetic data suggest that the eukaryote-type AAT is involved in the shuttling of reducing equivalents through the plastidic membrane, whereas the PT-AAT could be involved in the biosynthesis of the Asp-derived amino acids inside the organelle. In this work, a comparative modeling of the PT-AAT enzyme from Pinus pinaster (PpAAT) was performed using x-ray structures of a bacterial AAT (Thermus thermophilus; Protein Data Bank accession nos. 1BJW and 1BKG) as templates. We computed a three-dimensional folding model of this plant homodimeric enzyme that has been used to investigate the functional importance of key amino acid residues in its active center. The overall structure of the model is similar to the one described for other AAT enzymes, from eukaryotic and prokaryotic sources, with two equivalent active sites each formed by residues of both subunits of the homodimer. Moreover, PpAAT monomers folded into one large and one small domain. However, PpAAT enzyme showed unique structural and functional characteristics that have been specifically described in the AATs from the prokaryotes Phormidium lapideum and T. thermophilus, such as those involved in the recognition of the substrate side chain or the “open-to-closed” transition following substrate binding. These predicted characteristics have been substantiated by site-direct mutagenesis analyses, and several critical residues (valine-206, serine-207, glutamine-346, glutamate-210, and phenylalanine-450) were identified and functionally characterized. The reported data represent a valuable resource to understand the function of this enzyme in plant amino acid metabolism.  相似文献   

5.
6.
Much recent progress has been made to understand the impact of proteome allocation on bacterial growth; much less is known about the relationship between the abundances of the enzymes and their substrates, which jointly determine metabolic fluxes. Here, we report a correlation between the concentrations of enzymes and their substrates in Escherichia coli. We suggest this relationship to be a consequence of optimal resource allocation, subject to an overall constraint on the biomass density: For a cellular reaction network composed of effectively irreversible reactions, maximal reaction flux is achieved when the dry mass allocated to each substrate is equal to the dry mass of the unsaturated (or “free”) enzymes waiting to consume it. Calculations based on this optimality principle successfully predict the quantitative relationship between the observed enzyme and metabolite abundances, parameterized only by molecular masses and enzyme–substrate dissociation constants (Km). The corresponding organizing principle provides a fundamental rationale for cellular investment into different types of molecules, which may aid in the design of more efficient synthetic cellular systems.

This study shows that in E. coli, the cellular mass of each metabolite approximately equals the combined mass of the free enzymes waiting to consume it; this simple relationship arises from the optimal utilization of cellular dry mass, and quantitatively describes available experimental data.  相似文献   

7.
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes.  相似文献   

8.
The 2′-O-methylation of the nucleoside at position 32 of tRNA is found in organisms belonging to the three domains of life. Unrelated enzymes catalyzing this modification in Bacteria (TrmJ) and Eukarya (Trm7) have already been identified, but until now, no information is available for the archaeal enzyme. In this work we have identified the methyltransferase of the archaeon Sulfolobus acidocaldarius responsible for the 2′-O-methylation at position 32. This enzyme is a homolog of the bacterial TrmJ. Remarkably, both enzymes have different specificities for the nature of the nucleoside at position 32. While the four canonical nucleosides are substrates of the Escherichia coli enzyme, the archaeal TrmJ can only methylate the ribose of a cytidine. Moreover, the two enzymes recognize their tRNA substrates in a different way. We have solved the crystal structure of the catalytic domain of both enzymes to gain better understanding of these differences at a molecular level.  相似文献   

9.
The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation.  相似文献   

10.
A novel method for assaying the substrate specificity of proteolytic enzymes has been developed utilizing ligand-enhanced lanthanide ion fluorescence. This approach was used to develop peptide libraries to probe substrate specificity in the prime sites of proteolytic enzymes. A positional scanning synthetic combinatorial library of fluorogenic peptides was synthesized and used to determine the extended prime site specificity of bovine -chymotrypsin. The enzyme showed a preference for Lys and Arg in the P1′ position, rather broad specificity in the P2′ position, and a slight Arg specificity in the P3′ position. The specificity profile of bovine -chymotrypsin agrees well with previously reported data, and the substrate library reported herein should provide valuable information about the prime site substrate specificities of other proteolytic enzymes as well. Furthermore, the continuous fluorogenic assay described may prove useful in analyzing the activity of other hydrolytic enzymes.  相似文献   

11.
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.  相似文献   

12.
Polysaccharide-degrading microorganisms express a repertoire of hydrolytic enzymes that act in synergy on plant cell wall and other natural polysaccharides to elicit the degradation of often-recalcitrant substrates. These enzymes, particularly those that hydrolyze cellulose and hemicellulose, have a complex molecular architecture comprising discrete modules which are normally joined by relatively unstructured linker sequences. This structure is typically comprised of a catalytic module and one or more carbohydrate binding modules (CBMs) that bind to the polysaccharide. CBMs, by bringing the biocatalyst into intimate and prolonged association with its substrate, allow and promote catalysis. Based on their properties, CBMs are grouped into 43 families that display substantial variation in substrate specificity, along with other properties that make them a gold mine for biotechnologists who seek natural molecular “Velcro” for diverse and unusual applications. In this article, we review recent progress in the field of CBMs and provide an up-to-date summary of the latest developments in CBM applications.  相似文献   

13.
The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.  相似文献   

14.
A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A “wall-modifying enzyme” has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the “wall-modifying enzyme” is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an α-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the “wall-modifying enzyme” on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the “wall-modifying enzyme” is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the “wall-modifying enzyme” to affect cell walls suggests that the “wall-modifying enzyme” may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed.  相似文献   

15.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

16.
Putrescine N-methyltransferase (PMT) is a key enzyme of plant secondary metabolism at the start of the specific biosynthesis of nicotine, of tropane alkaloids, and of calystegines that are glycosidase inhibitors with nortropane structure. PMT is assumed to have developed from spermidine synthases (SPDS) participating in ubiquitous polyamine metabolism. In this study decisive differences between both enzyme families are elucidated. PMT sequences were known from four Solanaceae genera only, therefore additional eight PMT cDNA sequences were cloned from five Solanaceae and a Convolvulaceae. The encoded polypeptides displayed between 76% and 97% identity and typical amino acids different from plant spermidine synthase protein sequences. Heterologous expression of all enzymes proved catalytic activity exclusively as PMT and K cat values between 0.16 s−1 and 0.39 s−1. The active site of PMT was initially inferred from a protein structure of spermidine synthase obtained by protein crystallisation. Those amino acids of the active site that were continuously different between PMTs and SPDS were mutated in one of the PMT sequences with the idea of changing PMT activity into spermidine synthase. Mutagenesis of active site residues unexpectedly resulted in a complete loss of catalytic activity. A protein model of PMT was based on the crystal structure of SPDS and suggests that overall protein folds are comparable. The respective cosubstrates S-adenosylmethionine and decarboxylated S-adenosylmethionine, however, appear to bind differentially to the active sites of both enzymes, and the substrate putrescine adopts a different position.  相似文献   

17.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

18.
Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed “substrate lipidomics” to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site—and not each enzyme’s catalytic residues or polar headgroup binding site—predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.  相似文献   

19.
The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号