首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPI64 is a TBC domain-containing protein that binds the PDZ domains of EBP50, which binds ezrin, a major actin-binding protein of microvilli. High-resolution light microscopy revealed that ezrin and EBP50 localize exclusively to the membrane-surrounded region of microvilli, whereas EPI64 localizes to variable regions in the structures. Overexpressing EPI64 results in its and EBP50's relocalization to the base of microvilli, including to the actin rootlet devoid of ezrin or plasma membrane. Uncoupling EPI64's binding to EBP50, expression of any construct mislocalizing its TBC domain, or knock down of EBP50 results in loss of microvilli. The TBC domain of EPI64 binds directly to Arf6-GTP. Overexpressing the TBC domain increases Arf6-GTP levels, and expressing dominant-active Arf6 results in microvillar loss. These data reveal that microvilli have distinct cytoskeletal subdomains and that EPI64 regulates microvillar structure.  相似文献   

2.
The cortical scaffolding proteins EBP50 (ERM-binding phosphoprotein-50) and E3KARP (NHE3 kinase A regulatory protein) contain two PDZ (PSD-95/DlgA/ZO-1-like) domains followed by a COOH-terminal sequence that binds to active ERM family members. Using affinity chromatography, we identified polypeptides from placental microvilli that bind the PDZ domains of EBP50. Among these are 64- and/or 65-kD differentially phosphorylated polypeptides that bind preferentially to the first PDZ domain of EBP50, as well as to E3KARP, and that we call EPI64 (EBP50-PDZ interactor of 64 kD). The gene for human EPI64 lies on chromosome 22 where nine exons specify a protein of 508 residues that contains a Tre/Bub2/Cdc16 (TBC)/rab GTPase-activating protein (GAP) domain. EPI64 terminates in DTYL, which is necessary for binding to the PDZ domains of EBP50, as a mutant ending in DTYLA no longer interacts. EPI64 colocalizes with EBP50 and ezrin in syncytiotrophoblast and cultured cell microvilli, and this localization in cultured cells is abolished by introduction of the DTYLA mutation. In addition to EPI64, immobilized EBP50 PDZ domains retain several polypeptides from placental microvilli, including an isoform of nadrin, a rhoGAP domain-containing protein implicated in regulating vesicular transport. Nadrin binds EBP50 directly, probably through its COOH-terminal STAL sequence. Thus, EBP50 appears to bind membrane proteins as well as factors potentially involved in regulating membrane traffic.  相似文献   

3.
Cell function requires the integration of cytoskeletal organization and membrane trafficking. Small GTP-binding proteins are key regulators of these processes. We find that EPI64, an apical microvillar protein with a Tre-2/Bub2/Cdc16 (TBC) domain that stabilizes active Arf6 and has RabGAP activity, regulates Arf6-dependent membrane trafficking. Expression of EPI64 in HeLa cells induces the accumulation of actin-coated vacuoles, a distinctive phenotype seen in cells expressing constitutively active Arf6. Expression of EPI64 with defective RabGAP activity does not induce vacuole formation. Coexpression of Rab8a suppresses the vacuole phenotype induced by EPI64, and EPI64 expression lowers the level of Rab8-GTP in cells, strongly suggesting that EPI64 has GAP activity toward Rab8a. JFC1, an effector for Rab8a, colocalizes with and binds directly to a C-terminal region of EPI64. Together this region and the N-terminal TBC domain of EPI64 are required for the accumulation of vacuoles. Through analysis of mutants that uncouple JFC1 from either EPI64 or from Rab8-GTP, our data suggest a model in which EPI64 binds JFC1 to recruit Rab8a-GTP for deactivation by the RabGAP activity of EPI64. We propose that EPI64 regulates membrane trafficking both by stabilizing Arf6-GTP and by inhibiting the recycling of membrane through the tubular endosome by decreasing Rab8a-GTP levels.  相似文献   

4.
Small GTPase Rab27A plays a pivotal role in melanosome transport in melanocytes and in secretion by various secreting cells. Because the GTP- or GDP-locked mutant of Rab27A causes perinuclear aggregation of melanosomes, appropriate GTP-GDP cycling of Rab27A is essential for melanosome transport, and certain guanine nucleotide exchange factors and GTPase-activating proteins (GAPs) of Rab27A must be present in melanocytes. However, no such regulators of Rab27A have ever been identified. In this study we developed novel methods of rapidly screening 40 different TBC (Tre2/Bub2/Cdc16) proteins, putative Rab-GAPs, for Rab27A-GAP by: (i) searching for TBC proteins that induce melanosome aggregation in melanocytes; (ii) trapping GTP-Rab27A with a Rab27A effector domain (i.e. the SHD of Slac2-a) in cultured cells that express both Rab27A and TBC proteins; and (iii) measuring in vitro Rab27A-GAP activity. These methods allowed us to identify EPI64, previously characterized as an EBP50-binding protein that contains an orphan TBC domain, as a specific Rab27A-GAP. We further showed that mutations in the catalytic domain of EPI64 caused complete loss of its ability to induce melanosome aggregation. This is the first report of screening for Rab27A-GAP based on functional interactions, and our screening methods can be applied for other uncharacterized TBC proteins.  相似文献   

5.
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells.  相似文献   

6.
Rab27, a small GTPase, is generally recognized as an important regulator of secretion that interacts with Rab27-specific effectors to regulate events in a wide variety of cells, including endocrine and exocrine cells. However, the mechanisms governing the spatio-temporal regulation of GTPase activity of Rab27 are not firmly established, and no GTPase-activating protein (GAP) specific for Rab27 has been identified in secretory cells. We previously showed that expression of EPI64, a Tre-2/Bub2/Cdc16 (TBC)-domain-containing protein, in melanocytes inactivates endogenous Rab27A on melanosomes (Itoh, T., and Fukuda, M. (2006) J. Biol. Chem. 281, 31823-31831), but the EPI64 role in secretory cells has never been investigated. In this study, we investigated the effect of EPI64 on Rab27 in isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Subcellular fractionation and immunohistochemical analyses indicated that EPI64 was enriched on the apical plasma membrane of parotid acinar cells. We found that an antibody against the TBC/Rab-GAP domain of EPI64 inhibited the reduction in levels of the endogenous GTP-Rab27 in streptolysin-O-permeabilized parotid acinar cells and suppressed amylase release in a dose-dependent manner. We also found that the levels of EPI64 mRNA and EPI64 protein increased after IPR stimulation, and that treatment with actinomycin D or antisense-EPI64 oligonucleotides suppressed the increase of EPI64 mRNA/EPI64 protein and the amount of amylase released. Our findings indicated that EPI64 acted as a physiological Rab27-GAP that enhanced GTPase activity of Rab27 in response to IPR stimulation, and that this activity is required for IPR-induced amylase release.  相似文献   

7.
Upon antigen recognition, T-cell receptor (TCR/CD3) and other signaling molecules become enriched in a specialized contact site between the T cell and antigen-presenting cell, i.e. the immunological synapse (IS). Enrichment occurs via mechanisms that include polarized secretion from recycling endosomes, but the Rabs and RabGAPs that regulate this are unknown. EPI64C (TBC1D10C) is an uncharacterized candidate RabGAP we identified by mass spectrometry as abundant in human peripheral blood T cells that is preferentially expressed in hematopoietic cells. EPI64C is a Rab35-GAP based both on in vitro Rab35-specific GAP activity and findings in transfection assays. EPI64C and Rab35 dominant negative (DN) constructs each impaired transferrin export from a recycling pathway in Jurkat T-cells and induced large vacuoles marked by transferrin receptor, TCR, and SNAREs implicated in TCR-polarized secretion. Rab35 localized to the plasma membrane and to intracellular vesicles where it substantially colocalized with TfR and with TCR. Rab35 was strongly recruited to the IS. Conjugate formation was impaired by transfection with Rab35-DN or EPI64C and by EPI64C knock down. TCR enrichment at the IS was impaired by Rab35-DN. Thus, EPI64C and Rab35 regulate a recycling pathway in T cells and contribute to IS formation, most likely by participating in TCR transport to the IS.  相似文献   

8.
CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells.  相似文献   

9.
Regulation of the number of Ca2+-activated K+ channels at the endothelial cell surface contributes to control of the endothelium-derived hyperpolarizing factor response, although this process is poorly understood. To address the fate of plasma membrane-localized KCa2.3, we utilized an extracellular epitope-tagged channel in combination with fluorescence and biotinylation techniques in both human embryonic kidney cells and the human microvascular endothelial cell line, HMEC-1. KCa2.3 was internalized from the plasma membrane and degraded with a time constant of 18 h. Cell surface biotinylation demonstrated that KCa2.3 was rapidly endocytosed and recycled back to the plasma membrane. Consistent with recycling, expression of a dominant negative (DN) RME-1 or Rab35 as well as wild type EPI64C, the Rab35 GTPase-activating protein, resulted in accumulation of KCa2.3 in an intracellular compartment. Expression of DN RME-1, DN Rab35, or wild type EPI64C resulted in a decrease in steady-state plasma membrane expression. Knockdown of EPI64C increased cell surface expression of KCa2.3. Furthermore, the effect of EPI64C was dependent upon its GTPase-activating proteins activity. Co-immunoprecipitation studies confirmed an association between KCa2.3 and both Rab35 and RME-1. In contrast to KCa2.3, KCa3.1 was rapidly endocytosed and degraded in an RME-1 and Rab35-independent manner. A series of N-terminal deletions identified a 12-amino acid region, Gly206–Pro217, as being required for the rapid recycling of KCa2.3. Deletion of Gly206–Pro217 had no effect on the association of KCa2.3 with Rab35 but significantly decreased the association with RME-1. These represent the first studies elucidating the mechanisms by which KCa2.3 is maintained at the plasma membrane.  相似文献   

10.
The mechanisms by which epithelial cells regulate the presence of microvilli on their apical surface are largely unknown. A potential regulator is EBP50/NHERF1 (ERM-binding phosphoprotein of 50 kD/Na(+)-H(+) exchanger regulatory factor), a microvillar scaffolding protein with two PDZ domains followed by a C-terminal ezrin-binding domain. Using RNAi and expression of RNAi-resistant EBP50 mutants we systematically show that EBP50 is necessary for microvillar assembly and requires that EBP50 has both a functional first PDZ domain and an ezrin-binding site. Expression of mutants mimicking Cdc2 or PKC phosphorylation are nonfunctional in microvillar assembly. Biochemical analysis reveals that these mutants are defective in PDZ1 accessibility when PDZ2 is occupied, and can be rendered functional in vivo by additional mutation of PDZ2. EBP50 is not necessary for mitotic cell microvilli, and PKC activation causes a rearrangement of microvilli on cells due to phosphorylation-dependent loss of EBP50 function. Thus, EBP50 is a critical factor that regulates microvilli assembly and whose activity is regulated by signaling pathways and occupation of its PDZ2 domain.  相似文献   

11.
12.
The Rab3 family small G proteins (Rab3A-D) are involved in the regulated secretory pathway of brain and secretory tissues. Among Rab3-interacting proteins, Rabphilin-3, Rim, and Noc2, all of which contain a conserved Rab3-binding domain (RBD3), are generally recognized Rab3 effector proteins in neurons and secretory cells. Although Rab3B was also detected in epithelial cells, its function remained unknown. We isolated cDNA sequences from human epithelial Caco2-cell mRNA by degenerate RT-PCR based on the conserved amino acid sequence of RBD3. Multiple cDNA clones were identified as encoding Noc2. Northern blot analysis revealed that Noc2 mRNA was expressed not only in secretory tissues but also in epithelial tissues and cell lines. A pull-down assay demonstrated that Noc2 bound to Rab3B in a GTP-dependent manner. When Noc2 was co-expressed with the GTP-bound form of Rab3B, it was recruited from the cytosol to perinuclear membranes. Furthermore, overexpression of Noc2 inhibited the cell-surface transport of basolateral vesicular stomatitis virus glycoprotein. These results suggest that Noc2 functions as a potential Rab3B effector protein in epithelial cells.  相似文献   

13.
Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell–cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.  相似文献   

14.
Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by loss of apical microvilli and formation of cytoplasmic inclusions lined by microvilli in enterocytes. MVID is caused by mutations in the MYO5B gene, coding for the myosin Vb motor protein. Although myosin Vb is implicated in the organization of intracellular transport and cell surface polarity in epithelial cells, its precise role in the pathogenesis of MVID is unknown. We performed correlative immunohistochemistry analyses of sections from duodenal biopsies of a MVID patient, compound heterozygous for two novel MYO5B mutations, predicting loss of function of myosin Vb in duodenal enterocytes together with a stable MYO5B CaCo2 RNAi cell system. Our findings show that myosin Vb‐deficient enterocytes display disruption of cell polarity as reflected by mislocalized apical and basolateral transporter proteins, altered distribution of certain endosomal/lysosomal constituents including Rab GTPases. Together, this severe disturbance of epithelial cell function could shed light on the pathology and symptoms of MVID.   相似文献   

15.
Uterine epithelial cells (UECs) undergo extensive morphological remodelling in preparation for an implanting blastocyst. This remodelling involves changes in the actin cytoskeleton and surface structures including microvilli. Ezrin and ezrin-radixin-moesin-binding protein-50-kDa (EBP50) link actin filaments to intra-membranous adhesion molecules and are important molecules in polarised epithelia. The current study is the first to describe the colocalisation and molecular association of ezrin and EBP50 in rat UECs by using immunofluorescence microscopy and immunoprecipitation techniques. These proteins have also been localised in relation to uterine epithelial cytoskeletal rearrangement during early pregnancy in the rat and to the effect of apical surface contact between opposing epithelial cells, blastocyst contact and contact with a silicon filament. Immunofluorescence microscopy has revealed that ezrin and EBP50 respond to contact between opposing epithelial cells and increase apically on day 6 of pregnancy. This apical distribution is also observed in UECs in contact with a silicon filament. Ezrin and EBP50 are however absent within the implantation chamber itself, seemingly mimicking the events that take place in leucocyte-endothelium binding. Thus, ezrin and EBP50 occur apically in UECs at the time of implantation in the rat and in response to a substitute blastocyst (filament) suggesting a role for these proteins in the cytoskeletal rearrangements that facilitate uterine receptivity and blastocyst-epithelial adhesion. Their loss within the implantation chamber possibly allows the subsequent invasion of the embryo.  相似文献   

16.
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.  相似文献   

17.
We recently showed that the COOH terminus of the cystic fibrosis transmembrane conductance regulator associates with the submembranous scaffolding protein EBP50 (ERM-binding phosphoprotein 50 kD; also called Na(+)/H(+) exchanger regulatory factor). Since EBP50 associates with ezrin, this interaction links the cystic fibrosis transmembrane conductance regulator (CFTR) to the cortical actin cytoskeleton. EBP50 has two PDZ domains, and CFTR binds with high affinity to the first PDZ domain. Here, we report that Yes-associated protein 65 (YAP65) binds with high affinity to the second EBP50 PDZ domain. YAP65 is concentrated at the apical membrane in airway epithelia and interacts with EBP50 in cells. The COOH terminus of YAP65 is necessary and sufficient to mediate association with EBP50. The EBP50-YAP65 interaction is involved in the compartmentalization of YAP65 at the apical membrane since mutant YAP65 proteins lacking the EBP50 interaction motif are mislocalized when expressed in airway epithelial cells. In addition, we show that the nonreceptor tyrosine kinase c-Yes is contained within EBP50 protein complexes by association with YAP65. Subapical EBP50 protein complexes, containing the nonreceptor tyrosine kinase c-Yes, may regulate apical signal transduction pathways leading to changes in ion transport, cytoskeletal organization, or gene expression in epithelial cells.  相似文献   

18.
Polarized gastrointestinal epithelial cells form tight junctions that spatially separate apical and basolateral cell membrane domains. These domains harbor functionally distinct proteins that contribute to cellular homeostasis and morphogenesis. Transforming growth factor β (TGFβ) is a critical regulator of gastrointestinal epithelial cell growth and differentiation. Functional assays of vectorial TGFβ signaling and immunofluorescence techniques were used to determine the localization of TGFβ receptors and ligand secretion in polarizing Caco‐2 cells, a colon cancer cell line. Results were compared to the nontransformed MDCK cell line. In both Caco‐2 and MDCK cells, addition of TGFβ1 to the basolateral medium resulted in phosphorylation of Smad2. No phosphorylation was observed when TGFβ1 was added to the apical chamber, indicating that receptor signaling is localized at the basolateral membrane. In support of this, immunofluorescence and biotinylation assays show receptor localization along the basolateral membrane. Secretion of TGFβ1 from MDCK and Caco‐2 cells into the apical or basolateral medium was measured by ELISA. Interestingly, secretion was exclusively apical in the nontransformed MDCK line and basolateral in transformed Caco‐2 cells. Collectively, these results show basolateral domain specificity in localization of the TGFβ receptor signaling apparatus. These observations have important implications for understanding the biology of TGFβ in polarized epithelia, including elements of communication between epithelial and mesenchymal layers, and will prove useful in the design of therapeutics that target TGFβ function. J. Cell. Physiol. 224: 398–404, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
We have localized capping protein in epithelial cells of several chicken tissues using affinity-purified polyclonal antibodies and immunofluorescence. Capping protein has a distribution in each tissue coincident with proteins of the cell-cell junctional complex, which includes the zonula adherens, zonula occludens, and desmosome. "En face" views of the epithelial cells showed capping protein distributed in a polygonal pattern coincident with cell boundaries in intestinal epithelium, sensory epithelium of the cochlea, and the pigmented epithelium of the retina and at regions of cell-cell contact between chick embryo kidney cells in culture. "Edge-on" views obtained by confocal microscopy of intact single intestinal epithelial cells and of retinal pigmented epithelium showed that capping protein is located in the apical region of the epithelial cells coincident with the junctional complexes. These images do not resolve the individual types of junctions of the junctional complex. Immunolabeling of microvilli or stereocilia was faint or not detectable. Capping protein was also detected in the cytoplasm of intact intestinal epithelial cells and in nuclei of cells in the pigmented retina and in the kidney cell cultures, but not in nuclei of cells of the intestinal epithelium or sensory epithelium. Biochemical fractionation of isolated intestinal epithelial cells shows capping protein in the brush border fraction, which contains the junctional complexes, and in the soluble fraction. These results are consistent with the results of the immunolabeling experiments. Highly purified microvilli of the brush borders also contained capping protein; this result was unexpected based on the low intensity of immunofluorescence staining of microvilli and stereocilia. The microvilli were not contaminated with junctional complexes, as defined by the absence of several markers for cell junctions. The cause and significance of this discrepancy is not certain at this time. Since capping protein binds the barbed end of actin filaments in vitro, we hypothesize that capping protein is bound to the barbed ends of actin filaments associated with one or more of the junctions of the junctional complex.  相似文献   

20.
The Eph family of receptor tyrosine kinases and their ephrin ligands are believed to limit cell-cell interactions during embryonic development via a repulsive mechanism. Little is known, however, about the intracellular effects of Eph signaling that lead to cellular repulsion. We have used scanning and transmission electron microscopy to examine the effects of EphA4 catalytic activity on cells in early embryos of Xenopus laevis. We show that ectopic EphA4 catalytic activity in superficial blastula cells leads to a more rounded cellular morphology, a loss of apical microvilli, and a loss of the apical/basolateral boundary, in addition to the previously reported loss of cell adhesion. These effects indicate that these epithelial cells have lost their apical/basolateral polarity. We also show that EphA4 catalytic activity causes a preferential loss of adherens junctions, compared to tight junctions. Furthermore, EphA4 catalytic activity was found to result in a change in filamentous actin levels in blastomeres. These results taken together suggest that the actin cytoskeleton might be a target of EphA4 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号