首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Klamath‐Siskiyou forests of northern California and southern Oregon are recognized as an area of globally outstanding biological distinctiveness. When evaluated at a national or global level, this region is often, necessarily, considered to be uniformly diverse. Due to large variation in biotic and abiotic variables throughout this region, however, it is unlikely that biological diversity is uniformly distributed. Furthermore, land management decisions nearly always occur at spatial scales smaller than this entire region. Therefore, we used field data from a random sampling design to map the distribution of local and regional richness of terrestrial molluscs and salamanders within northern California's portion of the Klamath‐Siskiyou region. We also evaluated the protection afforded by reserves established for varying reasons (e.g. for inspiration and recreation for people vs. species conservation) to hotspots of species richness and species representation of these taxa. No existing reserves were created with these taxa in mind, yet it was assumed that reserves established largely around considerations for the northern spotted owl (Strix occidentalis caurina) would afford adequate protection for many lesser‐known species. Species of terrestrial molluscs and salamanders share two general features: (1) they have extremely low vagility, and (2) they are often associated with moist, cool microclimates. Existing reserves disproportionately included areas of hotspots of species richness for both taxa, when hotspots included the richest c. 25% of the area, whereas non‐reserved lands contained greater than expected areas with lower species richness. However, when a more strict definition of hotspot was used (i.e. the richest c.10% of areas), local hotspots for both taxa were not disproportionately found in reserves. Reserves set aside largely for human aesthetics and recreation and those set aside for biodiversity both contributed to the protection of areas with high (greatest 25%) species richness. Existing biodiversity reserves represented 68% of mollusc species and 73% of salamander species, corresponding to the 99th and 93rd percentiles, respectively, of species representation achieved by simulating a random distribution of the same total area of reservation. Cumulatively, however, reserves set aside for inspiration and biodiversity represented 83% of mollusc species and 91% of salamander species. The existing reserves provide conservation value for terrestrial molluscs and salamanders. This reserve network, however, should not be considered optimal for either taxa.  相似文献   

2.
Aim To investigate the distribution of Australian species of Sauropus. The information obtained is used to (1) identify areas of highest richness and centres of endemism, (2) investigate latitudinal gradients of richness and range size, (3) determine the types of rarity shown, and (4) provide hypotheses on historical biogeography of the genus within Australia. Location Australia. Methods Specimens from 17 herbaria and field searches were examined and label and field information collated on distribution, habit and habitat. Distribution information was used to map all species within 784 grid cells of 1° × 1° and within the 97 Australian ‘ecological regions’. Morphometric cluster analysis of species was conducted using Kulczynski association and flexible UPGMA on 23 character states. Simple regression was used to correlate species richness, density and range size to changes in latitude. CLIMEX is used to match the climate of the region of highest richness in Australia with other areas of the world. Results Species richness was highest within the tropical north of Australia, and most species were associated with tropical savanna woodlands. Two areas were identified as centres of endemism and these corresponded closely to areas of high species richness. Four morphological groups were identified. One species (Sauropus trachyspermus) was found to be widespread, however all other species had small geographical ranges. Species richness and range size were significantly correlated with changes in latitude. Ten species were found to be of the rarest type, warranting conservation initiatives. Main conclusions Two regions of high richness and endemism of Sauropus occur, Thailand and Australia. Within Australia, the Kakadu‐Alligator River and the Cairns‐Townsville areas were identified as centres of endemism and high species richness for Sauropus. Australian Sauropus in general occur in similar communities and climates as other members of the genus elsewhere. Ten of the 27 species of Australian endemic Sauropus are extremely rare and warrant conservation initiatives. Correlations of latitude to species richness are potentially due to Sauropus radiating from the climatically stable top end of Australia. Increasing range size in more southern latitudes may also be due to stability of climates in the top end or because there is more available land area at these latitudes. Sauropus micranthus, the only non‐endemic species, is probably a more recent invader from the Tertiary period when tropical rain forests where more extensive and congruent with those of New Guinea.  相似文献   

3.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

4.
Invasion impacts local species turnover in a successional system   总被引:3,自引:0,他引:3  
Exotic plant invasions are often associated with declines in diversity within invaded communities. However, few studies have examined the local community dynamics underlying these impacts. Changes in species richness associated with plant invasions must occur through local changes in extinction and/or colonization rates within the community. We used long‐term, permanent plot data to evaluate the impacts of the exotic vine Lonicera japonica. Over time, species richness declined with increasing L. japonica cover. L. japonica reduced local colonization rates but had no effect on extinction rates. Furthermore, we detected significant reductions in the immigration of individual species as invasion severity increased, showing that some species are more susceptible to invasion than others. These findings suggest that declines in species richness associated with L. japonica invasion resulted from effects on local colonization rates only and not through the competitive displacement of established species.  相似文献   

5.
Rarity, commonness, and patterns of species richness: the mammals of Mexico   总被引:2,自引:0,他引:2  
Aim To determine whether rare or common species contribute most to overall patterns of spatial variation in extant species richness. Location Mexico. Methods Using data on the distribution of mammal species across Mexico at a quarter degree resolution, we ranked species from the most widespread to the most restricted (common‐to‐rare) within the study area, and from the most restricted to the most widespread (rare‐to‐common), and generated a sequence of patterns of species richness for increasing numbers of species. At each stage along both series of richness patterns, we correlated the species richness pattern for the subassemblage with that of the full assemblage. This allows comparison of subassemblages of the n most common with the n most rare species, in terms of how well they match the full assemblage richness pattern. Further analyses examined the effects on these patterns of correlation of the amount of raw information contained in the distributions of given numbers of rare and common species. Results For the mammals of Mexico the more widely distributed species contribute disproportionately to patterns of species richness compared with more restricted species, particularly for non‐volant species and endemic species. This is not simply a consequence of differences in the volumes of information contained in the distributions of rare and common species, with the disproportionate contribution of common species if anything being sharpened when these differences are taken into account. The pattern is most clearly demonstrated by endemic species, suggesting that the contribution of common species is clearest when the causes of rarity and commonness are limited to those genuinely resulting in narrow and widespread geographical ranges, respectively, rather than artificial (e.g. geopolitical) boundaries to the extents of study regions. Conclusions Perhaps surprisingly, an understanding of the determinants of overall patterns of species richness may gain most from consideration of why common species occur in some areas and are absent from others, rather than consideration of the distributions of rare species.  相似文献   

6.
Tabarelli  Marcelo  Mantovani  Waldir 《Plant Ecology》2000,148(2):149-155
To study the influence of gap structure and bamboo species on the regrowth of montane Atlantic forest, colonization by plants was characterized in 30 treefall gaps (30.3–500.5 m2). The study was conducted at Santa Virgínia (45°30 W, 23°17 S), a 4970-ha reserve of Atlantic montane forest in southeastern Brazil. Area covered by bamboos ranged from 0% to 100% of gap area. Average height of surrounding canopies ranged from 12 to 30 m. As gap are covered by bamboo and average height of surrounding canopies increased, both density and richness of pioneer woody species decreased. Density and richness of shade-tolerant species were negatively influenced by gap area. Low-light-demanding species of Miconia, Leandra and Rapanea accounted for the majority of both pioneer species and individuals sampled, whereas high-light demanding pioneers of Cecropia, Alchornea and Tibouchina were poorly represented. We suggest that in the Atlantic montane forest bamboo species compete for gaps, excluding other light-demanding pioneers. This results in an overall reduction of pioneer species richness in the Atlantic forest.  相似文献   

7.
Background: The South Aegean Volcanic Arc (SAVA), one of the most notable geological structures of the Mediterranean Sea, is floristically well known. Nevertheless, the factors that contribute to shaping the plant species richness of the SAVA remain unclear.

Aims: To investigate the factors that affect plant species richness and identify plant diversity hotspots in the SAVA and other central Aegean islands.

Methods: We used stepwise multiple regression to test the relationship between a number of environmental factors and plant species richness in the SAVA, as well as the residuals from the species–area linear regressions of native, Greek and Cycladian endemic taxa as indicators of relative species richness.

Results: The area was confirmed to be the most powerful single explanatory variable of island species richness, while geodiversity, maximum elevation and mean annual precipitation explained a large proportion of variance for almost all the species richness measures. Anafi, Amorgos and Folegandros were found to be endemic plant diversity hotspots.

Conclusions: We have demonstrated that geodiversity is an important factor in shaping plant species diversity in the Cyclades, while mean annual precipitation, human population density and maximum elevation were significant predictors of the Greek endemics present in the Cyclades. Finally, Anafi was found to be a plant diversity hotspot in the South Aegean Sea.  相似文献   

8.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Invasion biology is an important element of global environmental change and represents one of the main threats to biodiversity. American species were introduced to Tenerife after the Spanish conquest during the eighteenth century, as is the case for Agave americana and Opuntia dillenii. The long period of naturalization and adaptation of these species has led them to become two of the most dispersed introduced species of the archipelago. We analyzed several eradication management processes in an area intensively invaded by both O. dillenii and A. americana. Three treatments were randomly applied: mechanical removal, use of herbicide (glyphosate at 10% volume), and mechanical and herbicide applied together. Both the effectiveness of the treatments to remove the target exotic species biovolume and the impact of the eradication methods on species richness and species composition of the area were analyzed. We found that the treatments had an impact on species composition but not on species richness. Species composition was mainly affected by mechanical treatment. The effect caused by the mechanical removal of the exotic target species in species composition is minor after 4 years, and is related to a higher dominance of shrub species typical of coastal shrubland and of annual or pioneer species. The control of O. dillenii and A. americana is evident from insignificant recovery 4 years after treatment application. A mechanical and herbicide treatment together, allowed not only the immediate removal of large individuals but also the herbicidal control of smaller ones.  相似文献   

10.
The spatial scale and density‐dependent effects of non‐native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence–absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments.  相似文献   

11.
Richness and diversity of perennial plant species were evaluated in 17 Stipa tenacissima steppes along a degradation gradient in semiarid SE Spain. The main objective of the study was to evaluate the relative importance of historical human impacts, small‐scale patch attributes and environmental factors as determinants of perennial plant species richness and diversity in S. tenacissima steppes, where vegetation is arranged as discrete plant patches inserted on a bare ground matrix. Partial least squares regression was used to determine the amount of variation in species richness and diversity that could be significantly explained by historical human impacts, patch attributes, and environmental factors together and separately. They explained up to 89% and 69% of the variation in species richness and diversity, respectively. In both cases, the predictive power of patch attributes models was higher than that of models consisting of abiotic characteristics and variables related to human impact, suggesting that patch attributes are the major determinants of species richness and diversity in semiarid S. tenacissima steppes. However, patch attributes alone are not enough to explain the observed variation in species richness and diversity. The area covered by late‐successional sprouting shrubs and the distance between consecutive patches were the most influencing individual variables on species richness and diversity, respectively. The implications of these results for the management of S. tenacissima steppes are discussed.  相似文献   

12.
Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well‐inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of predicted rarity‐weighted richness (PRWR) as a surrogate in situations where species inventories may be available for a portion of the planning area. Use of PRWR as a surrogate involves several steps. First, rarity‐weighted richness (RWR) is calculated from species inventories for a q% subset of sites. Then random forest models are used to model RWR as a function of freely available environmental variables for that q% subset. This function is then used to calculate PRWR for all sites (including those for which no species inventories are available), and PRWR is used to prioritize all sites. We tested PRWR on plant and bird datasets, using the species accumulation index to measure efficiency of PRWR. Sites with the highest PRWR represented species with median efficiency of 56% (range 32%–77% across six datasets) when q = 20%, and with median efficiency of 39% (range 20%–63%) when q = 10%. An efficiency of 56% means that selecting sites in order of PRWR rank was 56% as effective as having full knowledge of species distributions in PRWR's ability to improve on the number of species represented in the same number of randomly selected sites. Our results suggest that PRWR may be able to help prioritize sites to represent species if a planner has species inventories for 10%–20% of the sites in the planning area.  相似文献   

13.
The composition, abundance, species richness and structural changes of the planktonic polychaete assemblages were analysed along a latitudinal transect in the California Current System (California, U.S.A. and Baja California, Mexico). The biological (species and abundance) and physical (temperature and salinity) data were analysed using Principal Component Analysis (PCA). The principal water masses in the survey area were determined. Twenty-four holoplanktonic species belonging to families Alciopidae, Iospilidae, Lopadorhynchidae, Tomopteridae and Typhloscolecidae were identified. Three clear species assemblages were discerned in the PCA results: 1. A `north group' (from Oregon-California border to San Francisco), with relatively high species richness (11) and the highest mean abundance (121 ind. per 500 m3) was characterised by Tomopteris septentrionalis, T. planktonis, Plotohelmis tenuis, and Travisiopis lobifera. California Current Water and Subtropical Central Water were present in the area occupied by this assemblage. 2. A `south group' (from off Bahía Magdalena to Cabo San Lucas), with the highest species richness (16), but low mean abundance (37.8 ind. per 500 m3); it included tropical affinity species, such Lopadorhynchus henseni, Tomopteris nationalis, and Travisiopsis dubia. In concordance Surface Equatorial Water was identified in this region. 3. A `transition group' (between the north and south regions) recorded the lowest mean abundance (2.3 ind. per 500 m3) and species richness (9). Only the California Current Water was detected in this area. The spatial pattern of species richness found along of this transect, was at least, partially due to the planktonic productivity distribution in the epipelagic region and the influence of several water masses coming from different directions.  相似文献   

14.
Question: Indices of functional diversity have been seen as the key for integrating information on species richness with measures that focus on those components of community composition related to ecosystem functioning. For comparing species richness among habitats on an equal‐effort basis, so‐called sample‐based rarefaction curves may be used. Given a study area that is sampled for species presence and absence in N plots, sample‐based rarefaction generates the expected number of accumulated species as the number of sampled plots increases from 1 to N. Accordingly, the question for this study is: can we construct a ‘functional rarefaction curve’ that summarizes the expected functional dissimilarity between species when n plots are drawn at random from a larger pool of N plots? Methods: In this paper, we propose a parametric measure of functional diversity that is obtained by combining sample‐based rarefaction techniques that are usually applied to species richness with Rao's quadratic diversity. For a given set of N presence/absence plots, the resulting measure summarizes the expected functional dissimilarity at an increasingly larger cumulative number of plots n (nN). Results and Conclusions: Due to its parametric nature, the proposed measure is progressively more sensitive to rare species with increasing plot number, thus rendering this measure adequate for comparing the functional diversity of species assemblages that have been sampled with variable effort.  相似文献   

15.
Aim We used abiotic environmental variables and historical locality records to infer distributions of endangered anuran species of Costa Rica to promote efficient strategies for future amphibian surveys. Location Costa Rica. Methods We used a Maximum Entropy Algorithm (Maxent) to predict potential distribution maps for 17 species of endangered anurans and create a consensus map of species richness. We compared the environmental conditions from localities where relictual amphibian populations were recently rediscovered with the conditions across their historical range to evaluate the possibility that these relictual populations might occur in specific climatic conditions that could explain their persistence. We used a multicriteria analysis considering the following factors: the intersection zones between the consensus map, conservation areas, potential Batrachochytrium dendrobatidis (Bd) distribution, collecting effort and areas within the precipitation range at which reappearances had occurred to locate sites for future surveys. Results The resulting predictions suggest that suitable areas for the highest number of species occur between 1300 and 2500 m.a.s.l and are concentrated along the Pacific slopes of the Cordillera de Talamanca and Cordillera Volcánica Central. Around 45% of the high potential richness area is under protection. Relictual populations of declined species seem to persist mainly in highly humid localities (2500–3500 mm of mean annual precipitation). Around 240 km2 has an ideal environment for the rediscovery of relictual populations. The multicriteria analysis showed that around 0.5% of the Costa Rican territory should be surveyed exhaustively for frogs. Main conclusions Many of the potential refugia we identified here have not been surveyed since 2000, the areas identified by the best model predictions correspond well with the localities of the relictual populations recently reported. We suggest future surveys of missing amphibian species should focus on these areas. The discovery of populations of endangered species can be used to propose conservation areas.  相似文献   

16.
The introduced tree species Spathodea campanulata (Bignoniaceae) forms novel forests in Puerto Rico, these having emerged after the abandonment of fields in the mid‐20th century and resulting in forests with a new species composition. We assessed bryophyte species richness in these novel forests and sought correlations with geological substrate, past land use, forest edge and patch area, forest structure, elevation, microhabitat diversity, tree species richness, and microclimatic conditions. Transects were established (edge and forest interior) in nine moist forest patches dominated by Spathodea in north‐central Puerto Rico. These Spathodea forest patches ranged from 0.6 to 9 ha. ANOVA, Chi‐square, correlation, and cluster analyses were used in data analyses. We found 57 bryophyte species. There was a significant difference in bryophyte richness among patches. Those on karst exhibited highest bryophyte richness due to microhabitat diversity, past land use, and shorter hydroperiods. Alluvial sites scored lowest in bryophyte species richness, and forest structure was important for bryophyte communities on these sites. Significant differences in temperature, relative humidity, and light intensity were observed between edge and forest interior. These appeared important for establishing bryophyte species cover but not richness and composition. Microhabitat diversity, patch area, and forest age were more related to bryophyte species richness than elevation, exposed edge, and tree species richness, regardless of geologic substrate. Collectively, Spathodea patches were similar to mature forests on the Island with respect to bryophyte species richness and composition. Novel Spathodea forests have conservation value due to their habitat suitability for bryophyte communities.  相似文献   

17.
Endemic freshwater finfish of Asia: distribution and conservation status   总被引:2,自引:1,他引:1  
Freshwater finfish species richness and level of endemism in East, and South and South‐East Asia that included 17 nations were studied using available databases, and included nation‐wise distribution, habitat types, and conservation status. The number of endemic finfish species in the region was 559, belonging to 47 families. Families Cyprinidae and Balitoridae accounted for 43.5% and 16.2% of the total number of endemic species in the region, respectively, followed by Sisoridae (25), Gobiidae (20), Melanotaeniidae (19), and Bagridae (16), and the other 41 families had at least one endemic species. Nation‐wise the most number of endemic freshwater finfish species occur in India (191), followed by China (88), Indonesia (84), and Myanmar (60). In India, the endemic species accounted for 26.4% of the native freshwater fish fauna, followed by South Korea (16.9%), the Philippines, (16.3%) and Myanmar (15.7%). Statistically significant relationships discerned between the number of indigenous and endemic species richness to land area (Xla in 103 km2) of the nations in the region were, Yin = 218.961 Ln(Xla) – 843.1 (R2 = 0.735; P < 0.001) and Ye = 28.445 Ln Xla?134.47 (R2 = 0.534; P < 0.01), respectively, and between indigenous and endemic species richness was Ye = 0.079Xn? 1.558 (R2 = 0.235; P < 0.05). The overall conservation status of endemic finfish in Asia was satisfactory in that only 92 species were in some state of vulnerability, of which 37 species (6.6%) are endangered or critically endangered. However, the bulk of these species (83.7%) were cave‐ and or lake‐dwelling fish. However, nation‐wise, the endemic freshwater finfish fauna of the Philippines and Sri Lanka, based on the imperilment index, were found to be in a highly vulnerable state. Among river basins, the Mekong Basin had the highest number of endemic species (31.3%). The discrepancies between databases are highlighted and the need to consolidate information among databases is discussed. It is suggested that the Mekong Basin be considered as a biodiversity hotspot, and appropriate management strategies be introduced in this regard.  相似文献   

18.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

19.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

20.
Species richness, area and climate correlates   总被引:4,自引:0,他引:4  
Aim Species richness–area theory predicts that more species should be found if one samples a larger area. To avoid biases from comparing species richness in areas of very different sizes, area is often controlled by counting the numbers of co‐occupying species in near‐equal area grid cells. The assumption is that variation in grid cell size accrued from working in a three‐dimensional world is negligible. Here we provide a first test of this idea. We measure the surface area of c. 50 × 50 km and c. 220 × 220 km grid cells across western Europe. We then ask how variation in the area of grid cells affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8–3311 km2; 220 × 220: 193–55,100 km2), but this did not affect the selection of variables in the models. Similarly, the predictive accuracy was affected only marginally by exclusion of area within models developed at the c. 50 × 50 km grid cells, although predictive accuracy suffered greater reductions when area was not included as a covariate in models developed for c. 220 × 220 km grid cells. Main conclusions Our results support the assumption that variation in near‐equal area cells may be of second‐order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent on this particular data set, grain and extent of the analyses, and more empirical work is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号