首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

2.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

3.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

4.
Opiate binding sites and endogenous opioids in Bufo viridis oocytes   总被引:1,自引:0,他引:1  
Binding sites with high affinity for [3H]naloxone, but not for [3H]morphine and [3H] (D-Ala2, D-Leu5) enkephalin, have been found in membranes of Bufo viridis oocytes. The binding is reversible and saturable. Bound [3H]naloxone is easily displaced both by unlabeled naloxone and bremazocine, much worse by morphine and SKF 10,047; (D-Ala2, D-Leu5) enkephalin and beta-endorphin practically fail to displace [3H]naloxone. Scatchard analysis is consistent with the existence of two classes of binding sites with Kd 15 nM and 10(3) nM. The number of binding sites with high affinity for naloxone is 16 pmol/mg protein of homogenized oocytes which is 20-50-fold higher than in, toad or rat brain. Oocyte extract displaces [3H]naloxone bound with oocytes' membranes and inhibits electrically evoked contractions of the rabbit vas deferens. This inhibition is reversed by naloxone. It is suggested that compounds similar to opiate kappa-agonists exist in oocytes. It cannot be ruled out that they participate via specific receptors in the regulation of oocyte maturation and egg development.  相似文献   

5.
X Z Khawaja  I C Green 《Life sciences》1992,50(17):1273-1281
The effect of glucose on the binding characteristics of opiate receptor subtypes was investigated in brain membranes from normoglycaemic lean Aston (C57BL/6J) mice using [3H][D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO), [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) and [3H]U69,593 as selective ligands for mu, delta and kappa opiate receptors respectively. The equilibrium dissociation constants (Kd) and maximal binding capacities (Bmax) of [3H]DAMGO and [3H]DPDPE were unaltered by 20mM glucose in vitro. Similarly, [3H]U69,593 binding was not modified by increasing the concentration of glucose from 0 to 20mM (P between 0.10 and 0.05), or by the presence of 20mM fructose and of 20mM 3-O-me-glucose, a non-metabolisable sugar, in the incubation medium. The nonselective opiate ligand, [3H]diprenorphine, bound with similar affinity and binding capacity to brain membranes prepared from control and streptozotocin-diabetic Swiss (CD1) mice. The addition of 20mM glucose or of 20mM fructose in vitro induced no changes in their binding parameters. The affinity and binding capacity of [3H]U69,593 to STZ-diabetic Swiss mouse brain membranes was not significantly different to that of normoglycaemic controls; 20mM glucose in vitro had no effect on ligand binding to kappa sites in STZ-diabetic mouse brain membranes. We conclude that glucose does not interact directly with the opiate receptor to modfy it in such as way as could explain the altered sensitivity to different opioid agonists seen in obese and hyperglycaemic animal models in vivo.  相似文献   

6.
A monoclonal antibody (mAb), KA8 that interacts with the kappa-opioid receptor binding site was generated. BALB/c female mice were immunized with a partially purified kappa-opioid receptor preparation from frog brain. Spleen cells were hybridized with SP2/0AG8 myeloma cells. The antibody-producing hybridomas were screened for competition with opioid ligands in a modified enzyme-linked immunosorbent assay. The cell line KA8 secretes an IgG1 (kappa-light chain) immunoglobulin. The mAb KA8 purified by affinity chromatography on protein A-Sepharose CL4B was able to precipitate the antigen from a solubilized and affinity-purified frog brain kappa-opioid receptor preparation. In competition studies, the mAb KA8 decreased specific [3H]ethylketocyclazocine ([3H]EKC) binding to the frog brain membrane fraction in a concentration-dependent manner to a maximum to 72%. The degree of the inhibition was increased to 86% when mu- and delta-opioid binding was suppressed by 100 nM [D-Ala2,NMe-Phe4,Gly-ol]-enkephalin (DAGO) and 100 nM [D-Ala2,L-Leu5]-enkephalin (DADLE), respectively, and to 100% when mu-, delta-, and kappa 2-sites were blocked by 5 microM DADLE. However, the mu-specific [3H]DAGO and the delta-preferring [3H]DADLE binding to frog brain membranes cannot be inhibited by mAb KA8. These data suggest that this mAb is recognizing the kappa- but not the mu- and delta-subtype of opioid receptors. The mAb KA8 also inhibits specific [3H]naloxone and [3H]EKC binding to chick brain cultured neurons and rat brain membranes, whereas it has only a slight effect on [3H]EKC binding to guinea pig cerebellar membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
F L Quito  V S Seybold  D R Brown 《Life sciences》1991,49(25):PL219-PL222
Opiates such as morphine have profound antidiarrheal and constipating actions due in part to their ability to modify intestinal ion transport. This study was undertaken to examine the presence of opiate binding sites in the porcine distal jejunum, a gut segment analogous to the human ileum. Specific binding sites for the tritiated, mu-selective opioid agonist [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) were localized to the basal portion of villous and crypt cells of the intestinal epithelium by receptor autoradiography. These binding sites may represent enkephalin receptors capable of modulating active electrolyte transport.  相似文献   

8.
Stereoselectivity of the binding sites for the specific kappa-opioid agonist [3H]U-69593, a benzeneacetamido based ligand was investigated in membrane suspension prepared from frog and rat brain, as well as guinea pig cerebellum, using the pure chiral forms of different unlabelled opiates. The ligand binding sites showed stereospecificity with at least three orders of magnitude differences in the affinities (measured as Ki values) of the opioid stereoisomer pairs both in rat and guinea pig membrane fractions. However, in frog brain membranes there was no substantial difference in potencies of the (-) and (+) isomers competing for the [3H]U-69593 binding sites. Another type of the kappa-site preferring opioid ligand, [3H]ethylketocyclazocine, a benzomorphan derivative was able to discriminate between (-) and (+) forms of the same compounds even in frog brain membrane preparation. Our data concerning binding profile of [3H]U-69593 in frog brain membranes are consistent with the observation that kappa opioid binding sites in frog (Rana esculenta) brain differ from those kappa-sites found in mammalian brains.  相似文献   

9.
Complete separation of the [3H]ethylketocyclazocine [( 3H]EKC) specific binding (kappa subtype) from tritiated Tyr-D-Ala2-Me-Phe4-Gly-ol5 enkephalin (DAGO) and Tyr-D-Ala2-L-Leu5-enkephalin (DALA) binding (mu-and delta-subtypes, respectively) was achieved by Sepharose-6B chromatography and sucrose density gradient centrifugation of digitonin solubilized frog brain membranes. The apparent sedimentation coefficient (s20.w) for the kappa receptor-detergent complex was 13.1 S and the corresponding Stokes radius 64 A. The isolated fractions exhibited high affinity for EKC and bremazocine, whereas mu- and delta-specific ligands were unable to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular entity from the mu and delta receptor sites.  相似文献   

10.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

11.
The covalent crosslinking of [3H]etorphine with opioid binding sites in the bovine adrenal medulla is reported. Of all the radiolabeled opiates tested (ethylketocyclazocine, etorphine, [D-Ala2, D-Leu5]enkephalin, [D-Ala2, Me-Phe4, Gly5-ol]enkephalin only etorphine could be crosslinked under uv irradiation. In our conditions (black uv lamp, 160 W, peak mean 360 nm, from a distance of 10 cm) maximum covalent binding was observed after a 10-min irradiation. Protein concentration was a crucial factor for the irreversible/total binding ratio. A good ratio (50%) was obtained at protein concentrations of about 1.0 mg/ml. Covalent binding of nonmodified opiates could be of interest for the biochemical characterization of their binding sites.  相似文献   

12.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   

13.
The binding of labelled naloxone, morphine and (D-Ala2,D-Leu5)enkephalin (DADL) to oocyte membranes of the toad Bufo viridis was investigated. The opiate antagonist naloxone binds to the membranes much more effectively than morphine or DADL. The binding of [3H]naloxone is reversible and saturating. The bound [3H]naloxone is readily replaced by unlabelled naloxone or bremazocine (kappa-agonist), far less effectively by morphine (mu-agonist) and SKF 10.047 (sigma-agonist) and is not practically replaced by DADL (delta-agonist), beta-endorphin (epsilon-agonist) and other neuropeptides. Analysis of experimental results in Scatchard plots revealed two types of binding sites with a high (Kd = 15 nM) and low (Kd = 10(3) nM) affinity for naloxone. The number of sites responsible for the binding of naloxone possessing a high affinity is 16 pmol-/mg of oocyte homogenate protein, i.e., 20-50 times as great as in the toad or rat brain. Trypsin and p-chloromercurybenzoate decrease the binding of [3H]naloxone. The oocyte extract is capable of replacing the membrane-bound [3H]naloxone, on the one hand, and of inhibiting the smooth muscle contracture of the rabbit vas deferens, on the other. This inhibition is reversed by naloxone and can also be induced by bremazocine, but not by morphine, DADL and SKF 10.047. In all probability oocytes contain compounds that are similar to opiate kappa-agonists. It may also be possible that these compounds mediate their effects via specific receptors and are involved in the control over maturation of oocytes and early development of toad eggs.  相似文献   

14.
Our observations that opioid peptides have direct effects on islet insulin secretion and liver glucose production prompted a search for endogenous opiates and their receptors in these peripheral tissues. Mu-, delta- and kappa-receptor-active opiates were demonstrated in brain, pancreas and liver extracts by displacement studies using selective ligands for the three opiate receptor subtypes [( 3H][D-Ala2,MePhe4,Gly5-ol]enkephalin, [3H][D-Ala2,D-Leu5]enkephalin and [3H]dynorphin respectively). Receptor-active opiates in brain extracts exhibited a stronger preference for delta-opiate-receptor sites than for mu and kappa sites. Pancreatic extract opiates demonstrated a similar activity at mu and delta sites, but substantially less at kappa sites. Liver extracts displayed similar selectivity for all three sites. The affinities of the receptor-active opiates for mu-, delta- and kappa-receptor subtypes displayed a rank order of potency: brain much greater than pancreas greater than liver. Total immunoreactive beta-endorphin and [Met5]enkephalin levels in liver and hepatocytes were greater than those in brain. Immunoreactive [Met5]enkephalin levels in pancreas were similar to, but beta-endorphin levels were substantially higher than, those in brain. Delta and kappa opiate-binding sites of high affinity were identified in crude membrane preparations of islets of Langerhans, but no specific opiate-binding sites could be demonstrated in liver membrane preparations. Immunoreactive dynorphin and beta-endorphin were demonstrated by immunogold labelling in rat pancreatic islet cells. No positive staining of liver sections for opioids was observed. These results suggest that the tissue content of opiate-receptor-active compounds in the pancreas and the liver is very significant and could contribute to the regulation of normal blood glucose levels.  相似文献   

15.
Using binding approaches, we have confirmed the high selectivity of [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) to delta, as opposed to morphine-preferring (mu2) sites in rat brain. However, detailed experiments studies indicate that this ligand also labels mu1 sites with very high affinity. Saturation studies of 3H-DSLET binding reveal curvilinear plots. Treating tissue with naloxonazine to block mu1 sites, eliminates the higher affinity binding component. Competition studies of the other peptides against 3H-DSLET and 3H[D-Ala2,MePhe4,Gly(ol)5]enkephalin (3H-DAMPGO) binding also implied high affinity binding of these peptides to mu1 sites. The ability of these peptides to interact with mu1 sites may help explain some of their pharmacological actions.  相似文献   

16.
The interaction of the nonselective opioid ligand [3H]bremazocine and of the kappa-opioid [3H]U69593 with the kappa-receptor was investigated in guinea-pig cortical membranes. Each radioligand bound to a single population of high-affinity sites, although [3H]U69593 apparently recognised only 70% of those sites labelled by [3H]bremazocine. Naloxone and the kappa-selective ligands U69593 and PD117302 exhibited full inhibition of the binding of both radioligands. Kinetic analysis demonstrated biphasic rates of association and dissociation for both [3H]bremazocine and [3H]U69593. Detailed analysis of the binding of [3H]U69593 revealed that the fast rate of association was dependent on radioligand concentration, in contrast to the slow rate, which was independent of ligand concentration. Guanylyl-5'-imidodiphosphate (GppNHp) inhibited binding of [3H]U69593; saturation analysis demonstrated that the inhibitory effects of GppNHp resulted in a decrease in affinity without any significant change in binding capacity. GppNHp attenuated the formation of the slow component of [3H]U69593 binding, while accelerating the fast component. The data are consistent with the formation of a high-affinity complex between the kappa-receptor and a guanine nucleotide binding protein. Guanine nucleotides promote the dissociation of this ternary complex and the stabilisation of a lower-affinity state of the receptor.  相似文献   

17.
1. Meptazinol is an interesting opioid-producing naloxone-reversible analgesia with few cardiovascular and respiratory effects. Recent studies indicate that mu 1 opioid receptors mediate meptazinol analgesia. Using a computerized autoradiographic subtraction technique, we have examined the regional distribution of meptazinol-sensitive [3H][D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAGO) binding and compared this with the distribution of mu 1 binding determined by competition with low [D-Ala2,D-Leu5]enkephalin (DADL) concentrations. 2. Meptazinol and DADL lowered [3H]DAGO to similar extents in most brain regions studied. The greatest levels of inhibition were observed in the periaqueductal gray, interpeduncular nucleus, thalamus, hypothalamus, and hippocampus. Low levels of inhibition were found in the temporal and frontal cortex. The correlation between the inhibition of [3H]DAGO binding by meptazinol and that by DADL was high (r = 0.83), consistent with the binding of meptazinol to mu 1 sites.  相似文献   

18.
The opioid receptor preference for dermorphin and several dimerized structural analogues was investigated using rat brain synaptosomes and correlated with the potencies of intracerebroventricularly administered dimeric dermorphin peptides to inhibit gastric acid secretion. The carboxyl terminus of dermorphin or amino-terminal dermorphin analogues was bridged by dihydrazide or (poly)ethylenediamine structures. Synaptosomal membranes were prepared for radioligand binding assay in the presence of soybean trypsin inhibitor and preincubated to remove endogenously bound opioid peptides before storage at -70 degrees C. Specific radiolabeled agonists used in the radioligand binding assays were [D-Ala2,N-methyl-Phe4,Gly-ol5] [3H] enkephalin for mu-receptors and [D-Ala2,D-Leu5] [3H]enkephalin for delta-receptors. delta-Receptor binding assays were conducted in the presence of 2.6 microM [N-Me-Phe3,D-Pro4]morphiceptin to suppress peptide binding to mu-receptors. [D-Ala2,N-methyl-Phe4,Gly-ol5]enkephalin and dermorphin had affinities of 1.39 and 1.22 nM for mu-receptors and 355.8 and 178.6 nM for delta-receptors, respectively. Affinities of dimeric-dermorphin0 for mu- and delta-receptors, and the mu-selectivity ratio, exceeded values characteristic of dermorphin. The dimerized amino-terminal dermorphin analogues are peptides whose receptor binding differed from the parent molecule; e.g. the affinity of dimeric tetrapeptides toward mu-receptors was reduced but was increased for delta-receptors relative to monomeric dermorphin-(1-4)-amide. Dimeric tetradermorphin linked by a bridge containing 12 methylene units (di-tetra-dermorphin12), exhibited a dramatic loss in the mu-selectivity ratio as a result of diminished mu-affinity. On the other hand, substitution of Gly4 by Sar in di-tetra-dermorphin2 enhanced binding to mu-receptors: substitution of D-Arg2 for D-Ala resulted in an increased binding to mu-receptors while decreasing binding to delta-receptors, yielding a peptide with the highest mu-selectivity ratio. These substitutions of D-Arg2 and Sar4 in dimeric amino-terminal dermorphin pentapeptides enhanced binding to both mu- and delta-receptors relative to dermorphin-(1-5)-amide, but led to a decrease in its mu-selectivity ratio. Several dimeric dermorphin analogues exhibited an enhanced mu-selectivity ratio relative to their monomeric analogues. Dimeric peptides, which had a relatively high affinity for mu-receptors, were effective in the suppression of gastric acid secretion.  相似文献   

19.
Functional coupling between mu-opioid receptors and GTP-binding regulatory proteins (G proteins) was investigated in reconstituted membranes of the guinea pig striatum. Selective mu-opioid agonists stimulated low-Km GTPase in striatal membranes, in a Na(+)-dependent manner. The same mu-opioid agonist [( D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAGO)] caused no stimulation when the membranes were exposed to islet-activating protein (IAP; pertussis toxin). There was also no DAGO stimulation in preparations pretreated with a lower concentration (5 microM) of N-ethylmaleimide (NEM), which abolished the ADP-ribosylation of purified Gi (the G protein that mediates inhibition of adenylate cyclase) and Go (a G protein of unknown function purified from bovine brain) by IAP. In addition, as the NEM treatment caused no change in the mu-agonist binding, NEM could probably substitute for IAP in inactivating native G proteins, without exhibiting effects on the receptor binding in membranes. The mu-agonist stimulation of low-Km GTPase activity in NEM-treated membranes was recovered by reconstitution with purified Gi or Go. The mu-agonist stimulation of low-Km GTPase was additive when Gi and Go were simultaneously reconstituted in NEM-treated membranes in amounts of 0.5 pmol/assay, which was required for maximal recovery, in either reconstitution experiment. The present findings provide the first evidence that the mu-opioid receptor may exist in at least two different forms, separately coupled to Gi or Go.  相似文献   

20.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号