首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
植物竞争研究进展   总被引:61,自引:0,他引:61  
竞争系指两个以上有机体或物种间阻碍或制约的相互关系。它是塑造植物形态、生活史的主要动力之一;并对植物群落的结构和动态具有深刻的影响。因其在生态学的中心地位,生态学家已从不同的侧面研究了这一复杂的生态学现象;生态学也因此而得到了发展。然而,人们对竞争的理解不尽一致,因而导致了概念上的混乱,平行研究相对缺乏、不同研究间的比较困难,从而阻碍了学科的发展。本文试就植物竞争的概念、竞争理论、竞争研究的实验方法、影响竞争能力的主要因素、种内和种间竞争对种群和群落的影响,如竞争与物种共存等进行综述;我们在总结研究成就的同时,亦指出了现有研究的局限性。  相似文献   

2.
AM 真菌和枯落物互作下两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用 枯落物是植物养分获取和土壤养分转化的关键载体。丛枝菌根(Arbuscular mycorrhizae, AM)对植物养分摄取的影响已被广泛认知。然而,在养分亏缺的喀斯特生境中,不同竞争方式的植物如何通过AM真菌和枯落物利用养分尚不清楚。本研究对两种喀斯特适生植物构树(Broussonetia papyrifera)和云贵鹅耳枥(Carpinus pubescens)进行种内竞争和种  间竞争种植处理,并通过幼套球 囊霉(Glomus etunicatum)接种或不接种处理,以及土壤中添加或不添加两物种叶片混合枯落物处理,测定了植物生物量以及氮、磷、钾浓度等指标,研究植物的生长和养分利用。研究结果表明,AM真菌对两种植物养分摄取影响不同,AM真菌显著提高了种内和种间竞争下构树的养分摄取量,但降低了云贵鹅耳枥的养分摄取量。种间竞争下接种AM真菌,枯落物添加促进了云贵鹅耳枥对氮的摄取,抑制了构树对氮的摄取。接种AM真菌和添加枯落物条件下,种间竞争的构树对氮、磷和钾的摄取量及云贵鹅耳枥对氮的摄取量均高于种内竞争;种间竞争下两物种养分竞争力呈现明显差异,即构树对磷和钾养分竞争力显著提高,对氮则不显著;云贵鹅耳枥仅对钾的养分竞争力显著降低,对氮和磷则无显著影响。这些结果说明,在AM真菌与枯落物相互作用下,两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用。  相似文献   

3.
植物对称性竞争与非对称性竞争研究进展及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
植物个体间的竞争是植物种群和群落中的普遍现象, 一直是生态学家关注的焦点, 尤其是植物在生长过程中与邻体的地上竞争。在环境水分胁迫或营养胁迫条件下, 植物根系间的地下竞争同样重要。然而, 有关植物体地上、地下竞争模式的相关理论一直存在分歧和争论。该文扼要介绍了植物地上、地下竞争的概念及模式, 简要阐述了植物对称性竞争与非对称性竞争相关研究的理论模型及其检验方法, 概述了影响植物间竞争甚至改变竞争模式的主要因素及其意义, 讨论了研究物种对称性竞争和非对称性竞争的模式和机制对生态学其他研究领域的影响和重要意义, 并对植物对称性竞争与非对称性竞争的相关研究进行了展望。  相似文献   

4.
王丽丽  毕润成  闫明  祁建春 《生态学报》2012,32(17):5494-5501
种间分离的研究对于揭示种间相互作用、群落组成与动态具有重要意义。为了探讨五鹿山自然保护区白皮松林内物种间的关系及其共存机制,运用ArcGIS软件、N×N最近邻体列联表及其2×2列联表截表的方法、Pielou的分离指数,Hegyi单木竞争指数对山西五鹿山白皮松群落55个样方内的15种乔木和灌木的种间分离规律及9种乔木的种内种间竞争关系进行研究,并根据种间分离情况以及物种对环境的适应方式,将样地中15个物种划分为3个生态种组。结果表明:(1)该群落中随机毗邻种对占绝大多数(80%),正分离种对较少(16.19%),负分离种对极少(3.81%),群落趋于稳定。(2)种间分离在不同种之间存在着一定的差异,正分离常发生在群落中的建群种或优势种之间;而负分离常发生在群落中的优势种和一些伴生种之间。(3)物种的种间分离状况与其种内种间竞争及物种的空间分布格局具有密切的关系,正分离常常发生在种内竞争大于种间竞争呈聚集分布的优势种或建群种之间;而负分离常常发生在种间竞争大于种内竞争的优势种和伴生种之间,且同一生态种组内的物种种间竞争较不同生态种组间激烈。(4)种间分离与群落的生境异质性和物种的生态需求也具有密切的关系,即两个具有不同生境要求的物种之间常常发生正分离;而具有相同或相似生境要求的物种之间常常发生负分离。(5)白皮松群落内物种的总体分离规律为全面不分离。(6)由生境异质性和物种间不同的生态适应性引起的种内种间关系是维持五鹿山自然保护区白皮松群落稳定共存的机制。  相似文献   

5.
破碎栖息地中物种灭绝机制   总被引:2,自引:0,他引:2  
刘会玉  林振山  孙燕  杨周  原艳梅 《生态学报》2008,28(8):3668-3674
栖息地毁坏既会直接降低物种多度,又会间接地降低物种迁移繁殖力,同时还会改变原有的种间平衡.尽管已有研究表明栖息地毁坏是物种灭绝的主要原因之一,但是尚未揭示破碎的栖息地中物种灭绝的驱动机制.通过元胞自动机模拟了物种灭绝对栖息地毁坏空间异质性响应的基础上,进一步研究了栖息地毁坏和种间竞争对物种灭绝的影响.结果发现:强物种的灭绝主要来自栖息地毁坏,而弱物种的灭绝,在随机毁坏下,主要由栖息地毁坏与种间竞争共同决定,而在边缘毁坏下则主要由种间竞争所引起的.栖息地毁坏与种间竞争共同引起的物种灭绝的时间非常短,而栖息地毁坏或种间竞争所引起的物种灭绝时间则较长.  相似文献   

6.
目的:脱皮榆是榆科榆属植物,主要分布在辽宁、北京、河北、河南、山西和内蒙古等省市自治区,是我国特有种。本研究分析其种内种间竞争关系以揭示群落生态适应机制。方法:研究通过Hegyi竞争指数分析北京市脱皮榆在不同优势度下种内种间竞争关系。结果:(1)群落优势种受到的总体竞争压力较大,优势种受到的平均竞争压力并不一定大;同样,以脱皮榆为优势种的群落中,脱皮榆受到的总体竞争压力也较大,但平均竞争指数并不大,脱皮榆受到的总体竞争强度和平均竞争强度之间并不存在确定的相关关系。(2)群落内一个物种受到的竞争压力来自种内竞争还是种间竞争与群落内物种的密度以及其分布格局有关,以脱皮榆为优势种的群落内,脱皮榆受到的种内竞争远大于种间,以其他优势种为主的群落中,脱皮榆主要受到来自种间的竞争。(3)在一定范围内,随着脱皮榆胸径的增加,受到的竞争压力逐渐减小。结论:为脱皮榆自然种群的保育、恢复和重建提供理论依据。  相似文献   

7.
滇西北金沙江流域云南红豆杉群落种内与种间竞争   总被引:2,自引:0,他引:2  
通过对滇西北金沙江流域云南红豆杉群落45株对象木及205株竞争木的调查,运用Hegyi的单木竞争指数计算了濒危保护植物云南红豆杉的种内和种间竞争强度.结果表明:云南红豆杉的种内竞争强度随径级的分布呈偏蜂曲线,径级在5 ~10 cm时最大,然后随径级的增加竞争强度呈减少的趋势;云南红豆杉的种间竞争强度(133.61)显著高于其种内竞争强度(76.88),其竞争压力主要来自于种间竞争;云南红豆杉的物种种内种间竞争强度大于丽江铁杉、亮叶杜鹃、红桦、川杨、川滇高山栲、少毛云南楤木等当地常见乔木物种,它们的竞争强度都在5以上;云南红豆杉与整个林分及伴生树种的竞争指数与对象木的胸径之间呈显著负相关,且均服从幂函数关系(CI=aDb),对象木胸径越大,其竞争压力越小.  相似文献   

8.
植物通过调整生长发育阶段的生长行为和形态特征来适应种间竞争关系的变化.在祁连山区建立了禾本科牧草燕麦与豆科毛苕子混播草地,以相对产量(RY)、相对密度(RD)和相对产量总值(RYT)为指标,研究了这2种1年生植物在不同物候期的种间竞争关系.结果表明:随着物候期的变化,种间竞争关系发生着动态变化,在出苗期,二者存在激烈的种间竞争,2个物种限制彼此相对数量的发展,株高、叶片数等增长缓慢;分蘖期,种间竞争转换为种间协作,分蘖数、叶片数等迅速增大,相对产量总值不断积累;进入拔节期,毛苕子开始扩大相对数量,限制了燕麦的生长,导致了激烈的种内竞争;到结实期,种内竞争再次转化为种间竞争.不同物候期的燕麦和毛苕子通过对植物形态可塑性的调整,更好地响应了种间竞争关系的转换.  相似文献   

9.
禾-豆混播草地种间竞争与共存   总被引:5,自引:0,他引:5  
王平  周道玮  张宝田 《生态学报》2009,29(5):2560-2567
以羊草分别与沙打旺、兴安胡枝子、花苜蓿、紫花苜蓿、山野豌豆5种豆科牧草在混播数量比为1:0、2:1、1:2、0:1的条件下建立两物种混播草地,以相对产量、相对密度和相对产量总值为指标,比较各个混播草地中种间竞争的相对激烈程度;各个物种组合的种间竞争优势以及是否发生氮素资源分离;并探索不同禾-豆混播群落达到共存状态的可能途径.研究结果表明,各个禾-豆组合的相对产量总值分别在不同收获时期大于1,禾草与豆科牧草的生态位发生了不同程度的分离.沙打旺和紫花苜蓿对羊草具有显著的竞争优势,即使其种内竞争大于种间竞争时,混生的羊草亦受到强烈的种间竞争压力.与此相反,羊草对兴安胡枝子、花苜蓿和山野豌豆具有种间竞争优势.刈割对竞争双方的优劣地位产生很大影响,减少强竞争力物种的混播比例,可促进混播物种双方均受益,形成共存格局.实验采用的相对密度指标在预测未来混播种群组成上比相对产量更为可行,并且具有维持低个体大小、高构件密度能力是竞争关系中忍耐型物种能够长期存在的可能原因之一.  相似文献   

10.
克隆植物对种间竞争的适应策略   总被引:1,自引:0,他引:1       下载免费PDF全文
葛俊  邢福 《植物生态学报》2012,36(6):587-596
克隆植物种群因其寿命的持久性、空间上的可移动性和繁殖方式的多样化等特征与非克隆植物有很大区别, 在自然生态系统中占有重要地位, 甚至成为优势种或者建群种。该文通过归纳有关克隆植物的种间竞争适应策略研究案例, 阐述了克隆植物的竞争能力差异和影响竞争力的因素; 论述了克隆植物在构件形态、克隆构型、繁殖对策等方面对种间竞争的响应, 以及生理整合作用与种间竞争的关系; 分析了导致某些同类研究的结论不一致的原因, 认为实验对象差异、实验设计、生境条件与克隆植物形态及生理上的时空动态变化等都可能影响实验结果; 提出了全球变化背景下的克隆植物种间竞争及其分子生态学机制等可能是今后需要重点关注的问题。  相似文献   

11.
Interspecific competition in small rodents: from populations to individuals   总被引:3,自引:0,他引:3  
The role of interspecific competition in shaping animal and plant communities has formed one of the major issues in ecology for decades. Small mammals, mainly rodents, have been among the model systems used for research on interspecific competition. Most studies within small mammal systems in the past have examined effects of competition on population attributes such as on population size, habitat use, or population dynamics. Population-level responses are the cumulative effects of individual responses, however, the influence of competition on individual life-history traits has rarely been studied. Research on life-histories may bridge gaps between population biology and effects of competition on individual behaviour. In this paper, we review recent research approaches to interspecific competition in rodents based on census data and species assemblages, that use regression analysis, time series analysis, removal and exclusion experiments, and showcase our own experimental research on the effects of interspecific competition on individual life-history traits in boreal voles.  相似文献   

12.
Research in community ecology has tended to focus on trophic interactions (e.g., predation, resource competition) as driving forces of community dynamics, and sexual interactions have often been overlooked. Here we discuss how sexual interactions can affect community dynamics, especially focusing on frequency-dependent dynamics of horizontal communities (i.e., communities of competing species in a single ecological guild). By combining mechanistic and phenomenological models of competition, we place sexual reproduction into the framework of modern coexistence theory. First, we review how population dynamics of two species competing for two resources can be represented by the Lotka–Volterra competition model as well as frequency dynamics, and how niche differentiation and overlap produce negative and positive frequency-dependence (i.e., stable coexistence and priority effect), respectively. Then, we explore two situations where sexual interactions change the frequency-dependence in community dynamics: (1) reproductive interference, that is, negative interspecific interactions due to incomplete species recognition in mating trials, can promote positive frequency-dependence and (2) density-dependent intraspecific adaptation load, that is, reduced population growth rates due to adaptation to intraspecific sexual (or social) interactions, produces negative frequency-dependence. We show how reproductive interference and density-dependent intraspecific adaptation load can decrease and increase niche differences in the framework of modern coexistence theory, respectively. Finally, we discuss future empirical and theoretical approaches for studying how sexual interactions and related phenomena (e.g., reproductive interference, intraspecific adaptation load, and sexual dimorphism) driven by sexual selection and conflict can affect community dynamics.  相似文献   

13.
It is increasingly recognized that the ecology of communities and evolution of species within communities are interdependent, and researchers have been paying attention to this rapidly emerging field of research, i.e., through studies on eco-evolutionary dynamics. Most of the studies on eco-evolutionary dynamics have been concerned with direct trophic interactions. However, community ecologists have shown that trait-mediated indirect effects play an important role in shaping the structure of natural communities. In particular, in terrestrial plant–insect systems, indirect effects mediated through herbivore-induced plant responses are common and have a great impact on the structure of herbivore communities. This review describes eco-evolutionary dynamics in herbivorous insect communities, and specifically focuses on the key role of herbivore-induced plant responses in eco-evolutionary dynamics. First, I review studies on the evolution of herbivore traits relevant to plant induction and discuss evolution in a community context mediated by induced plant responses. Second, I highlight how intraspecific genetic variation or evolution in herbivore traits can influence herbivore community structure. Finally, I propose the hypothetical model that induced plant responses supports eco-evolutionary feedback in herbivore communities. In this review, I argue that the application of the indirect interaction web approaches into studies on eco-evolutionary will provide profound insights into understanding of mechanisms of the generation and maintenance of biodiversity.  相似文献   

14.
Competition is a key process in plant populations and communities. We thus need, if we are to predict the responses of ecological systems to environmental change, a comprehensive and mechanistic understanding of plant competition. Considering competition, however, only at the population level is not sufficient because plant individuals usually are different, interact locally, and can adapt their behaviour to the current state of themselves and of their biotic and abiotic environment. Therefore, simulation models that are individual-based and spatially explicit are increasingly used for studying competition in plant systems. Many different individual-based modelling approaches exist to represent competition, but it is not clear how good they are in reflecting essential aspects of plant competition. We therefore first summarize current concepts and theories addressing plant competition. Then, we review individual-based approaches for modelling competition among plants. We distinguish between approaches that are used for more than 10 years and more recent ones. We identify three major gaps that need to be addressed more in the future: the effects of plants on their local environment, adaptive behaviour, and below-ground competition. To fill these gaps, the representation of plants and their interactions have to be more mechanistic than most existing approaches. Developing such new approaches is a challenge because they are likely to be more complex and to require more detailed knowledge and data on individual-level processes underlying competition. We thus need a more integrated research strategy for the future, where empirical and theoretical ecologists as well as computer scientists work together on formulating, implementing, parameterization, testing, comparing, and selecting the new approaches.  相似文献   

15.
Many studies of plant competition have been directed towards understanding how plants respond to density in monocultures and how the presence of weeds affects yield in crops. In this Botanical Briefing, the development and current understanding of plant competition is reviewed, with particular emphasis being placed on the theory of plant competition and the development and application of mathematical models to crop-weed competition and the dynamics of weeds in crops. By consolidating the results of past research in this manner, it is hoped to offer a context in which researchers can consider the potential directions for future research in competition studies and its application to integrated weed management.  相似文献   

16.
Competition and allelopathy in aquatic plant communities   总被引:2,自引:0,他引:2  
The paper reviews the published literature on the studies of competition and allelopathy in aquatic plant communities. Taking a broader view of the community, the studies on interactions between macrophytes and microphytes, macrophytes and macro-invertebrates and microbial communities are also reviewed. The role of these interactions in the structure and dynamics of aquatic communities has been discussed in light of the current hypotheses concerning competition in terrestrial communities. The available information suggests that the aquatic plants of various growth forms differ greatly among themselves in their responses and adaptations to competition and allelopathy. The possible application of these interactions in biological control of plant pests and in agriculture is also summarized. We conclude that the observed differences in these interactions between the terrestrial and aquatic environment are due to the effects of water as a non-resource variable as well as due to special adaptive characteristics of aquatic plants. Further we hypothesize that the aquatic plants adopt both competitive and allelopathic strategies under different conditions and in interactions with different plants. The review highlights that our knowledge of both competition and allelopathy among aquatic plant communities is inadequate and fragmentary, and therefore, both extensive and intensive studies are required.  相似文献   

17.
Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a ‘science of forecasting’.  相似文献   

18.
Microalgae are ideal phototrophs for many commercial products. Our previous research has leveraged biodiversity concepts to evaluate the effects of competition on dynamics and coexistence of different microalgal species. The originality of the review lies in the envisioning of these state‐of‐the‐art techniques to study a novel issue of how algal species modulate the whole‐cell metabolism and gene expression to yield biomass beyond current limits. Competition is crucial in driving the activity, structure and composition of algal communities which are of central importance to aquatic environment productivity. However, fundamental gaps remain in understanding how algal species compete for light and nitrogen by regulating whole‐cell metabolisms. Moreover, it is unclear how this competitive potential is modulated in algal populations to achieve high biomass production. Despite the principles and applications of competition having been tested theoretically and empirically in many studies, there is still considerable debate and paradoxical observations regarding the key mechanisms that underlie competition for limited nutrients. One reason for the uncertainty is the difficulty in making direct comparisons between species with differing functional traits. Moreover, the lack of available reference genomes for many algal species presents a further hindrance in understanding competitive trait dynamics. The review seeks to improve our understanding of these fundamental problems, which have direct implications in aiding the production of renewable fuels and chemicals via photosynthetic biology. The review also envisions a whole set of omics analysis in the future that would shed light on the poorly defined functions of competition in microalgae.  相似文献   

19.
Is the assembly of ant communities mediated by parasitoids?   总被引:3,自引:0,他引:3  
Donald H. Feener  Jr. 《Oikos》2000,90(1):79-88
Studies of species interactions in ant communities have been a major source of evidence for the importance of interspecific competition in natural communities. One consequence of the overwhelming evidence for competition in ant communities is that the role of such "top-down" processes as predation and parasitism has been ignored. Recent evidence, however, suggests that the composition and dynamics of ant communities are influenced by highly specialized parasitoids that mediate the outcome of competition among ant species. Here I review this evidence and develop a general framework for integrating the roles of competition and parasitism in the assembly of ant communities. I then use invasions by the red imported fire ant ( Solenopsis wagneri ) and the Argentine ant ( Linepithema humile ) to show how this new framework can be used to develop testable hypotheses regarding the ecological success (or failure) of invasive ant species.  相似文献   

20.
Different mechanisms, including equilibrium and non-equilibrium processes, have been taken into account as possible theoretical explanations of species coexistence. Despite the ample evidence on the existence of negative plant–soil feedback in both agriculture and natural vegetation, the role of these processes in the organization and dynamics of plant communities has so far been neglected. In this study, simulations by an individual-based competition model show how the intensity of negative feedback on individual plant performance can produce faster successional dynamics and allow species coexistence in two- and multi-species systems. The results show that even low levels of negative plant–soil feedback can enable species coexistence and often produce cyclic population dynamics. Moreover, the model highlights how negative feedback can generate positive reciprocal interspecific interactions at the population level, despite the fact that only competitive interactions is present between individual plants. In fact, competitive effects occur on a short-term scale, but positive reciprocal species interactions emerge only if negative feedback affects all species and if longer periods of simulation, more than the species life span, are considered. An important outcome of the model is the evidence that the effects at population level are timescale-dependent, thus showing the limitation of short-term species removal experiments used in traditional competition studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号