首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The hemiclonal waterfrog Rana esculenta (RL genotype), a bisexual hybrid between R. ridibunda (RR) and R. lessonae (LL), eliminates the L genome from its germline and clonally transmits the R genome (hybridogenesis). Matings between hybrids produce R. ridibunda offspring, but they generally die at an early larval stage. Mortality may be due to fixed recessive deleterious mutations in the clonally inherited R genomes that were either acquired through the advance of Muller's ratchet or else frozen in these genomes at hemiclone formation. From this hypothesis results a straightforward prediction: Matings between different hemiclones, that is, between R. esculenta possessing different R genomes of independent origin, should produce viable R. ridibunda offspring because it is unlikely that different clonal lineages have become fixed for the same mutations. I tested this prediction by comparing survival and larval performance of tadpoles from within‐ and between‐population crossings using R. esculenta from Seseglio (Se) in southern, Alpnach (Al) in central, and Elliker Auen (El) in northern Switzerland, respectively. Se is isolated from the other populations by the Alps. Enzyme electrophoresis revealed that parents from Se belonged to a single hemiclone that was different from all hemiclones found north of the Alps. Parents from Al also belonged to one hemiclone, but parents from El belonged to three hemiclones, one of which was indistinguishable from the one in Al. Rana esculenta from Se produced inviable tadpoles when crossed with other hybrids of their own population, but when crossed with R. esculenta from Al and El, tadpoles successfully completed metamorphosis, supporting the hypothesis I tested. Within‐population crosses from Al were also inviable, but some within‐population crosses from El, where three hemiclones were present, produced viable offspring. Only part of the crosses between Al and El were viable, but there was no consistent relationship between hemiclone combination and tadpole survival. When backcrossed with the parental species R. ridibunda, hybrids from all source populations produced viable offspring. Performance of these tadpoles with a sexual and a clonal genome was comparable to that of normal, sexually produced R. ridibunda tadpoles. Thus, in the heterozygous state, the deleterious mutations on the clonal R genomes did not appear to reduce tadpole fitness.  相似文献   

2.
Hymenopteran species in which sex is determined through a haplo‐diploid mechanism known as complementary sex determination (CSD) are vulnerable to a unique form of inbreeding depression. Diploids heterozygous at one or more CSD loci develop into females but diploids homozygous at all loci develop into diploid males, which are generally sterile or inviable. Species with multiple polymorphic CSD loci (ml‐CSD) may have lower rates of diploid male production than species with a single CSD locus (sl‐CSD), but it is not clear if polymorphism is consistently maintained at all loci. Here, we assess the rate of diploid male production in a population of Cotesia rubecula, a two‐locus CSD parasitoid wasp species, approximately 20 years after the population was introduced for biological control. We show that diploid male production dropped from 8–13% in 2005 and 2006 to 3–4% by 2015. We also show from experimental crosses that the population maintained polymorphism at both CSD loci in 2015. We use theory and simulations to show that balancing selection on all CSD alleles promotes polymorphism at several loci in ml‐CSD populations. Our study supports the hypothesis that ml‐CSD populations have lower diploid male production and are more likely to persist than comparable sl‐CSD populations.  相似文献   

3.
The solitary wasp Euodynerus foraminatus has single-locus complementary sex determination (sl-CSD), which is normally incompatible with inbreeding because it increases the production of sterile or inviable diploid males. Previous field observations of E. foraminatus have suggested that high levels of sibling mating are present in this species. However, conclusions about inbreeding and its genetic consequences could be flawed if based solely upon behavioural observations. Through microsatellite DNA genotyping of 102 E. foraminatus females in southwest Michigan, we estimate that between 55% and 77% of the matings in this population take place between siblings, but the frequency of diploid males is lower than expected. Our data suggest that a mixture of inbreeding and outbreeding persists in E. foraminatus despite the presence of sl-CSD.  相似文献   

4.
Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is observed depends on the structure of the genetic load of the species. The ladybird Harmonia axyridis is a good example of invasive species where introduced populations have gone through admixture and bottleneck events. We used laboratory experiments to manipulate the relatedness among H. axyridis parental individuals to assess the possibility for heterosis or outbreeding depression in F1 generation offspring for two traits related to fitness (lifetime performance and generation time). We found that inter‐populations crosses had no major impact on the lifetime performance of the offspring produced by individuals from either native or invasive populations. Significant outbreeding depression was observed only for crosses between native populations for generation time. The absence of observed heterosis is indicative of a low occurrence of fixed deleterious mutations within both the native and invasive populations of H. axyridis. The observed deterioration of fitness in native inter‐population crosses most likely results from genetic incompatibilities between native genomic backgrounds. We discuss the implications of these results for the structure of genetic load in H. axyridis in the light of the available information regarding the introduction history of this species.  相似文献   

5.
In sexually reproducing species, resources may theoretically be distributed with bias to the production of male or female offspring in response to the condition of the mother, commonly recognized as sex allocation. Using a recently characterized sex‐specific molecular marker, we tested for maternal sex allocation (i.e. maternal primary sex ratio bias and sex‐specific offspring investment) in captive laboratory‐bred western mosquitofish (Gambusia affinis) at early stages of offspring development. We found no statistical evidence to support sex allocation in G. affinis, based on maternal condition. In addition, we found little evidence for correlations between maternal condition and investment in the condition (mass) of individual offspring (of one sex or the other), although we did find that larger mothers tended to have higher fecundity.  相似文献   

6.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

7.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

8.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

9.
Genetic rescue is an increasingly considered conservation measure to address genetic erosion associated with habitat loss and fragmentation. The resulting gene flow from facilitating migration may improve fitness and adaptive potential, but is not without risks (e.g., outbreeding depression). Here, we conducted a test of genetic rescue by translocating ten (five of each sex) brook trout (Salvelinus fontinalis) from a single source to four nearby and isolated stream populations. To control for the demographic contribution of translocated individuals, ten resident individuals (five of each sex) were removed from each recipient population. Prior to the introduction of translocated individuals, the two smallest above‐barrier populations had substantially lower genetic diversity, and all populations had reduced effective number of breeders relative to adjacent below‐barrier populations. In the first reproductive bout following translocation, 31 of 40 (78%) translocated individuals reproduced successfully. Translocated individuals contributed to more families than expected under random mating and generally produced larger full‐sibling families. We observed relatively high (>20%) introgression in three of the four recipient populations. The translocations increased genetic diversity of recipient populations by 45% in allelic richness and 25% in expected heterozygosity. Additionally, strong evidence of hybrid vigour was observed through significantly larger body sizes of hybrid offspring relative to resident offspring in all recipient populations. Continued monitoring of these populations will test for negative fitness effects beyond the first generation. However, these results provide much‐needed experimental data to inform the potential effectiveness of genetic rescue‐motivated translocations.  相似文献   

10.
Mercury is a ubiquitous environmental pollutant that can negatively impact physiology and behavior of vertebrates, causing sub‐lethal changes in condition and reducing fitness. Here we examine its effect on offspring sex ratio. Previous studies demonstrate the ability of environmental contaminants to skew sex ratios in wild populations toward the production of females, and research in humans has demonstrated a decrease in male births following mercury exposure. We therefore hypothesized that female birds inhabiting the floodplain of a mercury‐contaminated river would produce broods more biased towards the production of females relative to birds from uncontaminated areas. We examined complete broods of three species: the aquatic‐feeding belted kingfisher Megaceryle alcyon, the terrestrial‐feeding eastern bluebird Sialia sialis, and the tree swallow Tachycineta bicolor, which feeds from both aquatic and terrestrial sources. Nestling sex ratios were shifted toward the production of females in all three species on mercury‐contaminated sites when compared to uncontaminated reference sites. These results may be explained by endocrine disruption or the Trivers–Willard theory of sex allocation. Our study is the first to examine the impact of mercury on offspring sex ratios in birds, and therefore contributes to our understanding of the potential for this persistent biomagnifying contaminant to alter fitness and effective population size in wildlife.  相似文献   

11.
1. Fig wasps have proved extremely useful study organisms for testing how reproductive decisions evolve in response to population structure. In particular, they provide textbook examples of how natural selection can favour female‐biased offspring sex ratios, lethal combat for mates and dimorphic mating strategies. 2. However, previous work has been challenged, because supposedly single species have been discovered to be a number of cryptic species. Consequently, new studies are required to determine population structure and reproductive decisions of individuals unambiguously assigned to species. 3. Microsatellites were used to determine species identity and reproductive patterns in three non‐pollinating Sycoscapter species associated with the same fig species. Foundress number was typically one to five and most figs contained more than one Sycoscapter species. Foundresses produced very small clutches of about one to four offspring, but one foundress may lay eggs in several figs. 4. Overall, the data were a poor match to theoretical predictions of solitary male clutches and gregarious clutches with n ? 1 females. However, sex ratios were male‐biased in solitary clutches and female‐biased in gregarious ones. 5. At the brood level (all wasps in a fig), a decrease in sex ratio with increasing brood size was only significant in one species, and sex ratio was unrelated to foundress number. In addition, figs with more foundresses contain more wasp offspring. 6. Finally, 10–22% of females developed in patches without males. As males are wingless, these females disperse unmated and are constrained to produce only sons from unfertilised eggs.  相似文献   

12.
Willi Y  Fischer M 《Heredity》2005,95(6):437-443
Small populations of our study species Ranunculus reptans have reduced fitness because of inbreeding, genetic load, and reduced mate availability; that is, they suffer from a three-fold genetic Allee effect. Here, we investigate how the effect of interpopulation outbreeding on offspring fitness depends on population size. We performed within- and between-population crosses with plants originating from 15 populations, and measured offspring performance in a common environment. Interpopulation outbreeding led to an increase in population means of clonal performance, which was defined as the number of rooted offspring rosettes produced per maternal ovule. This fitness gain mainly occurred at the life stage of seed set. It was especially pronounced for populations with a long-term history of small size inferred from their low genetic diversity, estimated from eight allozyme loci. We conclude that in a self-incompatible plant such as R. reptans, interpopulation outbreeding can lead to an immediate genetic rescue effect due to increased cross-compatibility and heterosis, and that this rescue effect is increased as population size decreases.  相似文献   

13.
Sex ratio biases in avian species remain controversial, although several studies have documented apparent facultative adjustment of offspring sex ratios. While hybridizing pied and collared flycatchers have exhibited sex ratio skews that may be a response to sex‐based costs associated with hybridization, this appears not to be true of a hybridized population of blue‐winged Vermivora pinus and golden‐winged V. chrysoptera warblers. We examined the primary sex ratio of nestlings in a population of hybrid and introgressed golden‐winged warblers. The sex ratio of 298 nestlings from 81 nests in the population was approximately 50:50. We conducted paternity assignments and analyzed groups of nestlings with shared genetic parents (“genetic broods”) and found no difference from the expected binomial distribution, and no statistically significant relationship between parental species phenotype and nestling sex ratio. We saw no evidence of preferential production of male or female nestlings, and female hybrids were found to mate and breed in the population. This suggests that heterogametic (female) hybrids are both viable and fertile, and thus that Haldane's Rule does not apply to this system. While populations of hybridizing golden‐winged warblers should be monitored for evidence of costs of heterospecific pairings, it is unlikely that adjustment of sex ratios would be the form of compensation for sub‐optimal mating conditions. Our results provide support for the emerging hypothesis that hybrids suffer no disadvantage relative to golden‐winged and blue‐winged warblers.  相似文献   

14.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

15.
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene‐rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc‐DRB and neutral loci. Nevertheless, the age structure of Mhc‐DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within‐group outbreeding, resulting from group‐living and sex‐biased dispersal, might weaken selection for MHC‐disassortative mate choice.  相似文献   

16.
In tree swallows Tachycineta bicolor, last‐laid eggs typically hatch one to two days after the other eggs in the clutch hatch, putting last‐hatched offspring at a disadvantage when competing for food delivered by parents. We studied the biology of last‐laid, last‐hatched tree swallow offspring over two years in a Wyoming, USA, population. Our first objective was to compare the growth of last‐hatched offspring to that of their earlier‐hatched nestmates. One previous study had suggested that last‐hatched, competitively disadvantaged offspring grow feathers faster than senior nestmates, even at the expense of other aspects of growth. This may allow last‐hatched offspring to fledge with senior nestmates and avoid abandonment by parents. A second objective was to determine the sex of nestlings from last‐laid eggs. If last‐laid eggs typically produce undersized, weak adults that are poor competitors for resources, and if the fitness costs of being undersized/weak are more severe for males than for females, then selection may favour having offspring from last‐laid eggs to be female. In this study, last‐laid eggs hatched in 63 of 66 (94%) nests and hatched last in 93% of cases. At hatching, offspring from last‐laid eggs weighed, on average, 63% as much as their three heaviest nestmates (range: 26–107%). Offspring from last‐laid eggs fledged from 71% of the nests that produced at least one fledgling and apparently starved to death in remaining nests. Last‐hatched offspring who were presumably at a substantial competitive disadvantage (those whose mass at hatching was no more than about 75% of the mean mass of their three heaviest nestmates), gained mass more slowly than their senior nestmates but they eventually attained the same peak mass before fledging. Last‐hatched offspring grew primary feathers more slowly than their senior nestmates although the difference in growth rate was slight (0.2 mm/d) and only marginally significant. As a group, offspring from last‐laid eggs did not differ from offspring from all other eggs in either maximum mass attained before fledging or tarsus length at fledging. This is atypical for species with asynchronous hatching and is possibly the result of another unusual trait: the tendency of parent tree swallows to distribute food equally among young within broods. The sex ratio of offspring from last‐laid eggs did not deviate from 1:1 (22 males, 21 females). Given that last‐hatched eggs do not routinely produce undersized/weak individuals in our study population, there should be little selection on parent females to bias the sex ratio of last‐laid offspring towards females.  相似文献   

17.
Restricted gene flow and localized selection should establish a correlation between physical proximity and genetic similarity in many plant populations. Given this situation, fitness may decline in crosses between nearby plants (inbreeding depression), and in crosses between more widely separated plants (“outbreeding depression”) mostly as a result of disruption of local adaptation. It follows that seed set and offspring fitness may be greatest in crosses over an intermediate “optimal outcrossing distance.” This prediction was supported for Ipomopsis aggregata, a long-lived herbaceous plant pollinated by hummingbirds. In six replicate pollination experiments, mean seed set per flower was higher with an outcrossing distance of 1–10 m than with selfing or outcrossing over 100 m. A similar pattern appeared in the performance of offspring from experimental crosses grown under natural conditions and censused for a seven-year period. Offspring from 10-m crosses had higher survival, greater chance of flowering, and earlier flowering than those from 1-m or 100-m crosses. As a result, 1-m and 100-m offspring achieved only 47% and 68%, respectively, of the lifetime fitness of 10-m offspring. Offspring fitness also declined with planting distance from the seed parent over a range of 1–30 m, so that adaptation to the maternal environment is a plausible mechanism for outbreeding depression. Censuses in a representative I. aggregata population indicated that the herbaceous vegetation changes over a range of 2–150 m, suggesting that there is spatial variation in selection regimes on a scale commensurate with the observed effects of outbreeding depression and planting distance. We discuss the possibility that differences in seed set might in part reflect maternal mate discrimination and emphasize the desirability of measuring offspring fitness under natural conditions in assessing outcrossing effects.  相似文献   

18.
The maintenance of gynodioecy and androdioecy in angiosperms   总被引:7,自引:0,他引:7  
D. G. Lloyd 《Genetica》1975,45(3):325-339
Algebraic models of gynodioecy show that the effects on the equilibrium sex ratio of the relative survival and seed production of the sexes and of inbreeding of male-fertile plants are identical for all genic modes of inheritance, provided that different genotypes among male-fertile plants (or among females) do not differ in average fitness. The effects of three modes of inbreeding on equilibrium sex ratios are examined. If there is competition between self- and cross-fertilization of male-fertile individuals, a stable sexual dimorphism can be maintained by an outbreeding advantage of females if both the proportion of cross-fertilized seeds among those borne on male-fertile individuals,t, and the inbreeding depression (fitness inbred/outbred seeds),i, are less than one half. A lower frequency of females is obtained for the same values oft andi if self-fertilization precedes cross-fertilization. If self-fertilization follows cross-fertilization, gynodioecy cannot be maintained by an outbreeding advantage of females. When the sex phenotypes of gynodioecious populations are determined by cytoplasmic inheritance, females need only a slight advantage over males in survival, ovule production or outbreeding to persist at equilibrium. When determined by nuclear genes, androdioecy can be maintained by greater fecundity or a higher survival rate of males than of female-fertile plants, but not by an outbreeding advantage. Androdioecy cannot be maintained with cytoplasmic inheritance of sex. The models suggest explanations for the more frequent occurrence of gynodioecy than of andrdioecy, the high frequency of gynodioecy in Hawaii and New Zealand, and the origin of gynodioecy from hermaphrodite but not from monoecious ancestors.  相似文献   

19.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

20.
Cyclical parthenogenesis presents an interesting challenge for the study of sex allocation, as individuals’ allocation decisions involve both the choice between sexual and asexual reproduction, and the choice between sons and daughters. Male production is therefore expected to depend on ecological and evolutionary drivers of overall investment in sex, and those influencing male reproductive value during sexual periods. We manipulated experimental populations, and made repeated observations of natural populations over their growing season, to disentangle effects of population density and the timing of sex from effects of adult sex ratio on sex allocation in cyclically parthenogenetic Daphnia magna. Male production increased with population density, the major ecological driver of sexual reproduction; however, this response was dampened when the population sex ratio was more male‐biased. Thus, in line with sex ratio theory, we show that D. magna adjust offspring sex allocation in response to the current population sex ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号