首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

2.
Oestrogen (E2) is an important regulator of bone cell function and alterations in oestrogen levels may cause abnormal bone metabolism in vivo. In this study we examined the long term effects of 17beta-oestradiol (17beta-E2) on G-proteins and the secondary signalling pathways of phospholipase C (PLC), cyclic adenosine monophosphate (cAMP), and 1,4,5-inositol triphosphate (IP3). Cells from neonatal mouse calvariae were cultured in phenol red-free RPMI 1640 medium supplemented with charcoal stripped foetal calf serum for 192 h with either oestrogen (10(-8) M), or oestrogen withdrawal after 48 h. Cultures were stimulated for the final 48 h with IL-6 (10(-10) M), or left unstimulated. Western blot analysis was undertaken on osteoblast membrane preparations obtained by 10 mM Tris-HCl, 0.1 mM EDTA pH 7.8 and centrifugation at 40,000 x g for 2 h. For cAMP study, cells were stimulated with IL-6 for either 15 min or 30 min. Intracellular cAMP was extracted from cells and measured by ELISA methodology. For the IP3 assay, cells were stimulated with IL-6 for 20 s and IP3 levels measured using radioimmunoassay. The blots revealed increased levels of Gialpha-, and Gqalpha-proteins with oestrogen withdrawal and IL-6 stimulation. This was in comparison to cells which were unstimulated, or stimulated with IL-6 with continuous 17beta-E2, or IL-6 alone. Gsalpha expression decreased with oestrogen withdrawal compared to the control. Limited amounts of Gialpha-, Gsalpha-, and Gqalpha-proteins were identified with continuous 17beta-E2. The levels of PLC isoforms PLCbeta1-2 were not affected by the differing oestrogen conditions. The cAMP production induced by IL-6 stimulation for 30 min and withdrawal of 17beta-E2 was lower and significantly different compared to the control study (P<0.05). Also IL-6 activation with continuous oestradiol increased cAMP levels and was significantly different from the control cells (P<0.01). However, 17beta-E2 had no effect on the formation of intracellular IP3, although IL-6 significantly lowered IP3 levels in all the groups compared to the control (P<0.01). These results suggest that oestrogen modulates the signal transduction pathways of G-protein molecules, and the secondary pathways of cAMP in mouse osteoblast-like cells.  相似文献   

3.
Sirtuin 1 (Sirt1) is a class III histone deacetylase (HDAC) that modulates gene expression and is involved in the regulation of proinflammatory cytokines. Interleukin-23 (IL-23) is produced by activated macrophages and dendritic cells and could fuel the progression of rheumatoid arthritis (RA). The goal of our study was to evaluate serum IL-23 levels and both Sirt1 activity and expression in peripheral blood mononuclear cells (PBMCs) in patients with RA compared to healthy controls (HC) and to determine the relationship between Sirt1 activity/expression and IL-23 levels. We assessed apoptosis in PBMCs of RA patients and its association with Sirt1 expression and serum IL-23. Serum IL-23 levels were increased in RA patients in comparison with controls. We found a positive correlation between the levels of serum IL-23 and serum IL-6 in RA patients. Decreased cytoplasmic Sirt1 activity was observed in RA patients with severe disease compared to HC. The expression of Sirt1 protein was significantly decreased in PBMCs of RA patients compared to HC using western blotting. Serum IL-23 levels correlated positively with the cytoplasmic Sirt1 activity in RA patients. Apoptosis rate of PBMCs isolated from RA patients was increased compared to HC and correlated negatively with the expression of Sirt1 protein and serum IL-23 levels. Levels of serum IL-23 and Sirt1 activity and expression were disturbed in RA parallel to increased PBMC apoptosis. Our findings might provide the rationale for the development of new therapeutic approaches in RA.  相似文献   

4.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

5.
We have previously demonstrated that cyclic ADP-ribose (cADPR) is a calcium signaling messenger in interleukin 8 (IL-8)-induced lymphokine-activated killer (LAK) cells. In this study we examined the possibility that IL-8 activates CD38 to produce another messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), in LAK cells, and we showed that IL-8 induced NAADP formation after cADPR production. These calcium signaling messengers were not produced when LAK cells prepared from CD38 knock-out mice were treated with IL-8, indicating that the synthesis of both NAADP and cADPR is catalyzed by CD38 in LAK cells. Application of cADPR to LAK cells induced NAADP production, whereas NAADP failed to increase intracellular cADPR levels, confirming that the production of cADPR precedes that of NAADP in IL-8-treated LAK cells. Moreover, NAADP increased intracellular Ca2+ signaling as well as cell migration, which was completely blocked by bafilomycin A1, suggesting that NAADP is generated in lysosome-related organelles after cADPR production. IL-8 or exogenous cADPR, but not NAADP, increased intracellular cAMP levels. cGMP analog, 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate, increased both cADPR and NAADP production, whereas the cAMP analog, 8-(4-chlorophenylthio)-cAMP, increased only NAADP production, suggesting that cAMP is essential for IL-8-induced NAADP formation. Furthermore, activation of Rap1, a downstream molecule of Epac, was required for IL-8-induced NAADP formation in LAK cells. Taken together, our data suggest that IL-8-induced NAADP production is mediated by CD38 activation through the actions of cAMP/Epac/protein kinase A/Rap1 in LAK cells and that NAADP plays a key role in Ca2+ signaling of IL-8-induced LAK cell migration.  相似文献   

6.
Coronary microembolization (CME) is associated with progressive myocardial dysfunction despite restoration of coronary flow reserve (CFR). The potential pathophysiological role of mast cells (MCs) remains unclear. Therefore, we induced CME in 18 miniswines and determined whether MC accumulation occurs and their effects on local cytokine secretion [interleukin (IL)-6, IL-8, tumor necrosis factor-alpha (TNF-alpha)]; cardiomyocyte apoptosis; and collagen formation at day 1 (D1), day 7 (D7), and day 30 (D30) after CME. Four sham-operated animals without CME (controls) and six animals treated with a MC stabilization agent (tranilast) for 30 days after CME were also studied. CFR decreased at D1 but returned to baseline level at D7 and D30. Coronary sinus levels of IL-6, IL-8, and TNF-alpha increased significantly at D1 and D7 (p<0.01 vs baseline). Levels of IL-6 and IL-8 at D30 returned to baseline level, but not those of TNF-alpha. The numbers of total and degranulating MCs, % apoptotic cardiomyocytes, and collagen volume fraction (CVF) over CME myocardium at D1, D7, and D30 were significantly higher than controls (p<0.01). Treatment with tranilast significantly reduced the serum level of TNF-alpha, numbers of total and degranulating MCs, % apoptotic cardiomyocytes, and CVF at D30 (all p<0.05). There was a significant positive correlation between the numbers of MCs with % apoptotic cardiomyocytes (r = 0.77, p<0.001) and CVF (r = 0.75, p<0.001) over the CME myocardium. Despite restoration of CFR, cardiomyocyte apoptosis persisted after CME and was positively correlated with the number of MCs but was prevented with tranilast treatment. These findings suggest that MCs contribute to cardiomyocyte apoptosis after CME.  相似文献   

7.
A characteristic feature of tissue resident human mast cells (MCs) is their hTryptase-β-rich cytoplasmic granules. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and we have shown that this tetramer-forming tryptase has beneficial roles in innate immunity but adverse roles in inflammatory disorders like experimental arthritis. Because the key tissue factors that control tryptase expression in MCs have not been identified, we investigated the mechanisms by which fibroblasts mediate the expression and granule accumulation of mMCP-6. Immature mouse bone marrow-derived MCs (mBMMCs) co-cultured with fibroblast-like synoviocytes (FLS) or mouse 3T3 fibroblasts markedly increased their levels of mMCP-6. This effect was caused by an undefined soluble factor whose levels could be increased by exposing FLS to tumor necrosis factor-α or interleukin (IL)-1β. Gene expression profiling of mBMMCs and FLS for receptor·ligand pairs of potential relevance raised the possibility that IL-33 was a sought after fibroblast-derived factor that promotes tryptase expression and granule maturation via its receptor IL1RL1/ST2. MCs lacking IL1RL1 exhibited defective fibroblast-driven tryptase accumulation, whereas recombinant IL-33 induced mMCP-6 mRNA and protein accumulation in wild-type mBMMCs. In agreement with these data, synovial MCs from IL1RL1-null mice exhibited a marked reduction in mMCP-6 expression. IL-33 is the first factor shown to modulate tryptase expression in MCs at the mRNA and protein levels. We therefore have identified a novel pathway by which mesenchymal cells exposed to inflammatory cytokines modulate the phenotype of local MCs to shape their immune responses.  相似文献   

8.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

9.
10.
Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis   总被引:3,自引:0,他引:3  
PG of the E series are generally known to suppress immune responses, however, we have found that PGE synergizes with IL-4 to induce IgE and IgG1 production in LPS-stimulated murine B lymphocytes. PGE2 and PGE1 (10(-6) to 10(-8) M) significantly increase IgE and IgG1 production (up to 26-fold) at all concentrations of IL-4 tested. In addition to its effects on IgE and IgG1, PGE also causes a significant decrease in IgM and IgG3 synthesis, suggesting that PGE may promote IL-4-induced class switching. The specificity of the E series PG effect is demonstrated by the fact that PGF2 alpha (10(-6) M) does not alter production of any of these isotypes. Because PGE can mediate its effects through cAMP in some cases, we investigated the importance of cAMP levels in regulation of isotype expression. Other agents that increase intracellular cAMP levels (cholera toxin and dibutyryl cAMP) were assessed for their ability to regulate isotype differentiation. Cholera toxin (100 pg/ml) and dibutyryl cAMP (100 microM) significantly enhanced IgE and IgG1 production and diminished IgM and IgG3 synthesis. We also show that PGE and cholera toxin elevate intracellular cAMP in B lymphocytes in a dose-dependent manner. In contrast, PGF2 alpha (10(-6) M) and the B subunit of cholera toxin (100 pg/ml) did not increase cAMP and did not regulate the isotype of Ig produced, reiterating the importance of cAMP in enhancing isotype differentiation. Although PGE is known to inhibit a number of immune responses, our data show that it is not always inhibitory. PGE may play a role in atopy in vivo where PGE-secreting cells such as macrophages, follicular dendritic cells, and fibroblasts can promote IgE synthesis. This research emphasizes the importance of PGE in regulation of the humoral immune response and adds a new stimulatory action to the repertoire of known PGE effects.  相似文献   

11.
Recognition of bacterial constituents by mast cells (MCs) is dependent on the presence of pattern recognition receptors, such as Toll-like receptors (TLRs). The final cellular response, however, depends on the influence of multiple environmental factors. In the current study we tested the hypothesis that the PI3K-activating ligands insulin-like growth factor-1 (IGF-1), insulin, antigen, and Steel Factor (SF) are able to modulate the TLR4-mediated production of proinflammatory cytokines in murine MCs. Costimulation with any of these ligands caused increased LPS-triggered secretion of IL-6 and TNF-α, but attenuated the production of IL-1β, though all three cytokines were produced in an NFκB-dependent manner. The pan-specific PI3K-inhibitor Wortmannin reverted the altered production of these cytokines. In agreement, MCs deficient for SHIP1, a negative regulator of the PI3K pathway, showed augmented secretion of IL-6/TNF-α and reduced production of IL-1β in response to LPS alone. The differential effects of IGF-1 on TLR4-mediated cytokine production were also observed in the context of TLR2 and IL-33 receptor-mediated MC activation. Importantly, these effects were seen in both bone marrow-derived and peritoneal MCs, suggesting general relevance for MCs. Using pharmacological and genetic tools, we could show that the p110δ isoform of PI3K is strongly implicated in SF-triggered suppression of LPS-induced IL-1β production. Costimulation with antigen was affected to a lesser extent. In conclusion, NFκB-dependent production of proinflammatory cytokines in MCs is differentially controlled by PI3K-activating ligand/receptor systems.  相似文献   

12.
Mast cells (MCs) have been thought to play a pathogenic role in the development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, an immunoregulatory function of these cells has recently been suggested. We investigated the role of MCs in EAE using the W(-sh) mouse strain, which is MC deficient. W(-sh) mice developed earlier and more severe clinical and pathological disease with extensive demyelination and inflammation in the CNS. The inflammatory cells were mainly composed of CD4(+) T cells, monocyte/macrophages, neutrophils, and dendritic cells. Compared with wild-type mice, MC-deficient mice exhibited an increased level of MCP-1/CCR2 and CD44 expression on CD4(+) T cells in addition to decreased production of regulatory T cells, IL-4, IL-5, IL-27, and IL-10. We also found that levels of IL-17, IFN-γ, and GM-CSF were significantly increased in peripheral lymphocytes from immunized W(-sh) mice compared with those in peripheral lymphocytes from wild-type mice. Reconstitution of W(-sh) mice downregulated susceptibility to EAE, which correlated with MC recruitment and regulatory T cell activation in the CNS. These findings indicate that responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS and that, in the absence of MCs, increased MCP-1, CCR2, IL-17, IFN-γ, CD44, and other inflammatory molecules may be responsible for increased severity of EAE.  相似文献   

13.
Several molecules can interact with membrane receptors on mononuclear cells to increase intracellular levels of cyclic adenosine monophosphate (cAMP). We used the cholera toxin (CT), a cAMP elevating agent, to study the influence of this nucleotide on the production of interleukin 2 (IL-2) by human peripheral blood mononuclear cells stimulated by phytohemagglutinin and phorbol myristate acetate. Stimulated generation of IL-2 activity was inhibited by CT but not by its B subunit. The inhibition was potentiated by addition of theophylline. Therefore the synthesis and/or release of IL-2 is controlled by intracellular cAMP levels and may be modulated by agents active on this nucleotide system, such as bacterial toxins, glycoprotein hormones, or neurotransmitters.  相似文献   

14.
15.
cAMP-dependent signalling cascades regulate a number of CNS functions including brain inflammation processes. In this study, we characterized IL-1-induced IL-6 production in hippocampal cells using H19-7/IGF-IR cells and investigated the effect of changes in intracellular cAMP levels on IL-1 activity. IL-1 potently induced IL-6 mRNA expression with a corresponding increase in IL-6 release, in a time- and dose-dependent manner with a maximal at 24 h and with an EC50 value of 0.11 ng/ml. Cell pre-treatment with the IL-1sR antagonist produced a rightward shift of IL-1 dose-response effect with a corresponding decrease in IL-1 potency. IL-1-induced IL 6 release was attenuated in the presence of the p38 MAPK inhibitor SB203580 but was not significantly affected by the PKA inhibitor KT 5720. Western blotting analysis of phospho-CREB cell content showed a marked increase in CREB activation. Similar results were obtained by pharmacologically increasing cAMP using dibutyryl cyclic adenosine monophosphate (dbcAMP) or the cAMP-specific type-4 phosphodiesterase inhibitor rolipram. Both dbcAMP and rolipram increased IL-6 production to about 50% of IL-1 effect. However, in the presence of IL-1, IL-6 production was further potentiated by either dbcAMP and rolipram, reaching 300% and 500% IL-1-induced levels. These data implicate the role of cAMP-dependent pathways on IL-6 production in neuronal cells and suggest novel synergistic mechanisms of regulation of cytokine production in brain.  相似文献   

16.
Plaminogen activator inhibitor-1 (PAI-1), the key physiological inhibitor of the plasmin fibrinolytic system, plays important roles in the pathogenesis of asthma. Mast cells (MCs) are crucial effector cells and a major source of PAI-1 for asthma. Cyclic adenosine monophosphate (cAMP) is the important regulator of MCs; however, its effects on PAI-1 expression in MCs remain unknown. We reported cAMP/protein kinase A pathway positively regulates PAI-1 expression through cAMP-response element binding protein binding to hypoxia response element-1 at −158 to −153 bp of human PAI-1 promoter in human MCs. Moreover, cAMP synergistically augments PAI-1 expression with ionomycin- or IgE receptor cross-linking-mediated stimulation.  相似文献   

17.
Interleukin-6 (IL-6) and interleukin-8 (IL-8) are implicated in the pathogenesis of rheumatic diseases. In affected joints fibroblast-like synoviocytes (FLS) are the major source of these pro-inflammatory cytokines. We have previously found that production of both cytokines is inhibited in vitro by taurine chloramine (Tau-Cl). Heme oxygenase (HO-1) activity was also reported to restrict synthesis of various inflammatory mediators, including IL-6 and IL-8. The aim of present study was to investigate whether this enzyme activity is implicated in the mechanism of Tau-Cl suppressive effect. We have shown that in rheumatoid FLS both hemin (known HO-1 inducer) and Tau-Cl significantly up-regulate HO-1 expression at the mRNA and protein levels and simultaneously inhibit IL-1β-triggered production of pro-inflammatory cytokines. However, the inhibitory potency of these compounds differs, because hemin is more potent inhibitor of IL-8 than IL-6 production, while Tau-Cl exerts opposite effect. Importantly, pretreatment of the cells with HO-1 inhibitor completely reverses the inhibitory effect of hemin on both cytokines production. However, in Tau-Cl treated cells this inhibitor fully restores only IL-8 secretion but has weaker effect on IL-6 response. Thus, the present results: (i) support HO-1 activity to be relevant to negatively control production of pro-inflammatory cytokines, and (ii) underline implication of HO-1 in mediating Tau-Cl inhibitory action.  相似文献   

18.
Zhang X  Zheng H  Zhang H  Ma W  Wang F  Liu C  He S 《Cytokine》2011,56(3):717-725
Recently, involvement of IL-17 in development of COPD has been noticed. Unlike IL-8, the role of IL-17 in COPD remains controversial. In order to further understand mechanisms in cigarette smoke (CS) induced COPD, we investigated IL-17 and IL-8 levels in different stages of COPD patients, and time courses of IL-17 and IL-8 release in CS induced COPD rats. A total of 73 elderly patients with COPD and 31 healthy volunteers were recruited in the study. IL-17 and IL-8 levels in the sputum and plasma were measured, and number of differential cells was counted. A newly developed CS induced rat COPD model was employed to study time courses of IL-17 and IL-8 release and nucleated cell accumulation. The results showed that IL-8 levels in the sputum of severe COPD patients were elevated by 16.5-fold, but IL-17 levels were reduced by 4.8-fold. While IL-8 correlated with neutrophils, IL-17 correlated with monocytes and lymphocytes. Similarly, level of IL-8 was increased, but IL-17 was decreased in the bronchoalveolar lavage fluid (BALF) of CS rats. Time course study showed that increased IL-8 production in the BALF initiated at 6 weeks, but decreased IL-17 production started at 10 weeks following CS exposure. In conclusion, increased IL-8 level in COPD patients appears mainly secreted from neutrophils and macrophages, whereas decreased IL-17 level seems resulted from reduced number of monocytes or damaged epithelial cells. Increased IL-8 (a proinflammatory cytokine) secretion and decreased IL-17 (a protective cytokine of airways) release can both contribute to development of COPD.  相似文献   

19.
20.
Interleukin 1 (IL-1) mediates many cellular functions, but the signal transduction mechanisms of its actions are not clearly understood. Here, we have examined the exact participation of cAMP in the IL-1-induced production of the precursors of matrix metalloproteinase (MMPs) and their specific inhibitor, tissue inhibitor of metalloproteinases (TIMP) in human uterine cervical fibroblasts. IL-1 significantly augmented the production of proMMP-1 (vertebrate procollagenase), proMMP-3 (prostromelysin), and TIMP without detectable changes in the intracellular level of cAMP. Dibutyryl cAMP (Bt2cAMP) and the cAMP elevating agent (forskolin) did not replace IL-1 as MMP inducers. On the contrary, the IL-1-mediated induction of proMMP-1 and proMMP-3 was significantly suppressed by treatment of the cells with Bt2cAMP, forskolin, or theophylline. The suppressive effect of Bt2cAMP on the IL-1-induced production of proMMP-1 and -3 was not due to the inhibition of zymogen secretion, but resulted from the decrease in the steady-state levels of proMMP-1 and proMMP-3 mRNAs. In contrast, Bt2cAMP slightly enhanced the IL-1-induced production of TIMP. The synthesis of proMMP-2 (72-kDa progelatinase/type IV procollagenase) was not altered by IL-1 and/or Bt2cAMP. These results suggest, first, that induction of proMMP-1 and -3 synthesis may share similar transduction pathways but they are distinct from those for proMMP-2 and TIMP synthesis and, second, that cAMP does not function as a second messenger in the MMPs' induction upon IL-1 stimulation in human uterine cervical fibroblasts. Thus, it is further suggested that the system that increases the intracellular cAMP level may be involved in negative regulation of proMMP-1 and -3 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号