首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both wing size and wing shape affect the flight abilities of birds. Intra and inter‐specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture Cathartes aura, an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non‐migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite‐tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike what has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower‐cost flight, through low wing‐loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.  相似文献   

2.
Wing morphology is known to strongly affect flight performance by affecting lift and drag during flight. Performance may consequently deteriorate during feather moult due to the creation of feather gaps in the wing. Since wing gap size may directly affect the extent of reduced flight capacity, rapid moult involving the creation of large feather gaps is expected to substantially impair flight compared with the small gaps induced by a slower moult. To examine the factors affecting wing-feather moult speed, we studied adults of nineteen resident or very short-distance migrant passerine species during their post-breeding moult using a model-selection framework following a phylogenetically controlled analysis. We examined the speed of wing-feather moult in relation to each species’ flight distance index that was estimated based on local foraging movements rather than on longer flights (e.g., migration), assessed by the Delphi technique of expert evaluation. Moult speed was also examined with respect to six morphometric variables: body mass, wing loading, the feather comprising the tip of the wing, aspect ratio, wing span, and wing area. Our results suggest that flight distance index is the most important factor determining the speed of wing-feather moult in songbirds. Species that regularly fly a shorter distance were found to moult quickly, and those that take relatively longer flights moult slowly. These results suggest that the aerodynamic cost of wing area reduction due to feather moult shapes the evolution of annual routine processes by dictating a slower moult speed (resulting in small wing gaps) for species that regularly fly long distances and consequently may be affected more substantially by large wing gaps compared with short distance flyers.  相似文献   

3.
Migration is an energetically expensive and hazardous stage of the annual cycle of non‐resident avian species, and requires certain morphological adaptations. Wing shape is one of the morphological traits that is expected to be evolutionarily shaped by migration. Aerodynamic theory predicts that long‐distance migrants should have more pointed wings with distal primaries relatively longer than proximal primaries, an arrangement that minimizes induced drag and wing inertia, but this prediction has mostly been tested in passerine species. We applied the comparative method of phylogenetically independent contrasts to assess convergent evolution between wing shape and migration within shorebirds. We confirmed the assumption that long‐distance migrants have less rounded wings than species migrating shorter distances. Furthermore, wing roundedness negatively correlates with fat load and mean distance of migratory flights, the basic components of migration strategies. After controlling for interspecific differences in body size, we found no support for a link between wing length and migration, indicating that wing shape is a more important predictor of shorebird migratory behaviour than wing length. The results suggest that total migration distance and migratory strategy may simultaneously act on the evolution of wing shape in shorebirds, and possibly in other avian species.  相似文献   

4.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

5.
Behaviour has direct links to wing morphology in bird species. Many studies have postulated migration to be one of the most important forces of selection acting on wing morphology, particularly in relation to wing pointedness. Studies in passerines have found that adults have longer and more pointed wings than juveniles, especially in migratory species. We analysed differences in wing morphology between age groups of the European Turtle Dove, a non‐passerine migratory species that benefits from rounded wings during their daily activity, due to its ground‐feeding behaviour and acrobatic flight style. Our results show that adults of this species have longer but more rounded wings than juveniles. This suggests that in this species wing morphology in juveniles is selected to facilitate the first migration, whereas other selection forces (e.g. flight manoeuvrability) are more important after the first moult. These data also explain why juveniles are not as adept at escaping from predators or hunters as adults.  相似文献   

6.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

7.
Monarch butterflies (Danaus plexippus) are parasitized by the protozoan Ophryocystis elektroscirrha throughout their geographical range. Monarchs inhabiting seasonally fluctuating environments migrate annually, and parasite prevalence is lower among migratory relative to non‐migratory populations. One explanation for this pattern is that long‐distance migration weeds out infected animals, thus reducing parasite prevalence and transmission between generations. In this study we experimentally infected monarchs from a migratory population and recorded their long‐distance flight performance using a tethered flight mill. Results showed that parasitized butterflies exhibited shorter flight distances, slower flight speeds, and lost proportionately more body mass per km flown. Differences between parasitized and unparasitized monarchs were generally not explained by individual variation in wing size, shape, or wing loading, suggesting that poorer flight performance among parasitized hosts was not directly caused by morphological constraints. Effects of parasite infection on powered flight support a role for long‐distance migration in dramatically reducing parasite prevalence in this and other host–pathogen systems.  相似文献   

8.
Wings have evolved in phylogenetically distant organisms with morphologies that depend on the combined effects of diverse, potentially contrasting selective forces. In birds, long pointed wings boost speed and energetic efficiency during cruising flight but reduce manoeuvrability. Migratory behavior is believed to lead to the evolution of more pointed wings, but selection on pointedness has never been estimated. Because annual routines of migrants are tightly scheduled, wing pointedness may be selected for because it allows for earlier arrival to the breeding grounds. In long‐distance migratory barn swallows Hirundo rustica we showed that selection via breeding date and thus annual fecundity operates on wing pointedness, but not on other wing traits, among yearling females but not among older females or males. Selection on wing pointedness specifically in yearling females may result from climatic effects, which favour earlier arrival from migration, and from yearling females being the sex‐by‐age class with the latest migration and the smallest wing pointedness. Wing morphology differed between sexes and age classes because of change in size of the outermost but not the innermost wing feathers. Hence, sex‐ and age‐specific selection on wing pointedness operates in a species with sex‐ and age‐dependent variation in phenology and wing morphology.  相似文献   

9.
Variation in wing morphology results from the combination of diverse selection pressures. Wing feather morphology within species varies with sex and ontogenetic effects, and also with ecological factors. Yet, the direction of causation for the wing morphology–ecology association remains to be elucidated. Under the ‘ecology-dependence’ hypothesis, wing morphology covaries with ecological conditions, because the latter affect feather molt. Alternatively, the ‘habitat choice’ hypothesis posits that individuals with different wing morphology choose different habitats because of the habitat-dependent advantages of a specific wing morphology. We tested these competing hypotheses in the migratory, aerially insectivorous barn swallow (Hirundo rustica). We quantified wing morphology (isometric size, pointedness, and convexity) on the same individuals during consecutive breeding seasons (i.e., before and after molt in sub-Saharan wintering areas) and located wintering areas using light-level geolocators. Wing pointedness of females but not males during 1 year negatively correlated with vegetation vigor (gauged by the Normalized Difference Vegetation Index; NDVI) in the African area where individuals spent the next winter. Partial least-squares path modelling showed that the association between wing morphology and NDVI was sex-dependent. Conversely, NDVI during wintering did not predict wing morphology in the next breeding season. Because wing morphology can have carry-over effects on subsequent performance, we investigated selection on wing traits and found strong positive fecundity selection on wing size of females. Our results suggest that female barn swallows choose their wintering habitat depending on their wing morphology. In addition, directional fecundity selection operates on females, suggesting sex-dependence of current selection on the flight apparatus.  相似文献   

10.
Summary Do birds that migrate over longer distances have more pointed wings than more sedentary birds? Within several bird genera, species differ considerably in their migration distances. This makes it possible to study the extent to which different taxa show similar morphological solutions to common selection pressures. I selected 14 species, two from each of seven passerine genera, to maximize within-genus differences in migration distance. Wing lengths and the lengths of eight primary feathers around the wing tip were measured to assess wing length and shape. Primary lengths were transformed to take into account the allometric relationship between the length of each feather and wing length and then collapsed into summary measures of shape by principal component analysis. I used the method of independent contrasts to address the effects of phylogeny. Wing length showed no relationship with migration distance. There was a correlation between migration distance and wing shape. It is concluded that long-distance migration has resulted in convergent morphological evolution of long distal and short proximal primaries, resulting in wing tips close to the leading edge of the wing.  相似文献   

11.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

12.
Butterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho‐functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro‐ and micro‐evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro‐evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness‐related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex‐specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co‐evolution between morphology and flight behaviour.  相似文献   

13.
Migratory species may display striking phenotypic plasticity during individual lifetimes. This may include differential investment in body parts and functions, differential resource use and allocation, and behavioural changes between migratory and non‐migratory phases. While migration‐related phenotypic changes are well‐reported, their underlying mechanisms are usually poorly understood. Here we compare individuals from migratory (reproductive diapause) and non‐migratory (reproductive) phases of closely related aposematic butterfly species to study how sexual dimorphism and migratory behaviour underlie significant morphological tradeoffs, and propose a plausible scenario to explain the migration‐related phenotypic plasticity observed in females of migratory species. We found that female butterflies invested significantly more in their abdominal mass compared to males irrespective of their migratory phase, and underwent a clear shift in their body mass allocation after the switch from the reproductive diapause phase to the reproductive phase. In reproductive phase, females invested much more in reproductive tissue. This switch occurred as a result of increased abdominal mass (i.e. reproductive tissue mass) without significant reduction in the thoracic mass (i.e. flight muscle mass). Migratory males, however, were not significantly different from non‐migratory males in terms of relative investment in flight and reproductive tissues. These patterns were consistent between migratory and non‐migratory aposematic species within and across clades. While migratory habits may influence the physiology and behaviour of both sexes, long‐distance migration affected female morphology much more markedly compared to that of males. These results show the sex‐specific nature of adaptations to migratory behaviour, and suggest that seemingly disparate life‐history traits such as aposematism and migration may have similar influences on the lifetime energetic investments of insects.  相似文献   

14.
Current avian migration patterns in temperate regions have been developed during the glacial retreat and subsequent colonization of the ice‐free areas during the Holocene. This process resulted in a geographic gradient of greater seasonality as latitude increased that favoured migration‐related morphological and physiological (co)adaptations. Most evidence of avian morphological adaptations to migration comes from the analysis of variation in the length and shape of the wings, but the existence of intra‐feather structural adjustments has been greatly overlooked despite their potential to be under natural selection. To shed some light on this question, we used data from European robins Erithacus rubecula overwintering in Campo de Gibraltar (Southern Iberia), where sedentary robins coexist during winter with conspecifics showing a broad range of breeding origins and, hence, migration distances. We explicitly explored how wing length and shape, as well as several functional (bending stiffness), developmental (feather growth rate) and structural (size and complexity of feather components) characteristics of flight feathers, varied in relation to migration distance, which was estimated from the hydrogen stable isotope ratios of the summer‐produced tail feathers. Our results revealed that migration distance not only favoured longer and more concave wings, but also promoted primaries with a thicker dorsoventral rachis and shorter barb lengths, which, in turn, conferred more bending stiffness to these feathers. We suggest that these intra‐feather structural adjustments could be an additional, largely unnoticed, adaptation within the avian migratory syndrome that might have the potential to evolve relatively quickly to facilitate the occupation of seasonal environments.  相似文献   

15.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

16.
Effects of predation danger on migration strategies of sandpipers   总被引:10,自引:0,他引:10  
David B .  Lank  Robert W .  Butler  John  Ireland  Ronald C .  Ydenberg 《Oikos》2003,103(2):303-319
We examine the potential selective importance of predation danger on the evolution of migration strategies of arctic‐breeding calidrid sandpipers. Adult calidrids truncate parental care for reasons not obviously related to levels of food abundance on the breeding areas or at migratory stopover sites, suggesting that a different trade‐off occurs between providing additional care and adult survivorship. The southward migrations of adult western sandpipers precede those of migratory peregrine falcons by almost a month. By moving early and quickly, adults remain ahead of migrant falcons all the way to their non‐breeding areas, where they rapidly moult flight feathers. They complete the moult just as falcons arrive in late September–October. By migrating early, they avoid exposure to falcons when they are unusually vulnerable, due to the requirements for fuelling migratory flight and of wing feather moult. Juvenile western sandpipers migrate south just as falcon numbers start to increase, but do not moult flight feathers in their first winter. Pacific dunlin use an alternative strategy of remaining and moulting in Alaska after falcons depart, and migrating to their overwintering sites after migrants have passed. East of the Rocky Mountains, the southbound migration of falcons begins 4–6 weeks later. Southbound semipalmated sandpipers make extended migratory stopovers, but their lengths of stay shorten prior to falcon migration to the sites in September. Predation danger also may affect the evolution of migration routes. Southbound western sandpipers fly directly from Alaska to southern British Columbia, in contrast to the multi‐stage journey northward along the Alaska panhandle. We estimate that a direct flight would be more economical on northward migration, but may be avoided because it would expose sandpipers to higher mass‐dependent predation danger from migratory falcons, which travel north with sandpipers. By contrast, few raptors are present in Alaska during preparation for the southward flight. A temporal and spatial window of safety may also permit semipalmated sandpipers to become extremely vulnerable while preparing for trans‐Atlantic southward flights. Danger management may account for the these previously enigmatic features of calidrid migration strategies, and aspects of those of other birds.  相似文献   

17.
The majority of migrant monarchs (Danaus plexippus) from the eastern USA and south‐eastern Canada migrate to Mexico; however, some of them migrate to Cuba. Cuban migrants hatch in south‐east Canada and eastern USA, and then engage in a southern trip of 4000 km to this Caribbean island. In Cuba, these migrants encounter resident monarchs, which do not migrate, and instead move between plant patches looking for nectar, mating partners and host plants. These differences in flight behaviour between migrant and resident Cuban monarchs may have resulted in different selective pressures in the wing size and shape. Two modes of selection were tested, directional and stabilizing. In addition, wing condition was compared between these two groups. Monarchs were collected for 4 years in Cuba and classified as resident or migrant using two independent techniques: Thin‐layer chromatography and stable hydrogen and stable carbon isotope measurements. Wing size was measured and wing condition was rated in the butterflies. Fourier analysis and wing angular measurements were used to assess wing shape differences. Migrants have significantly longer wings than residents, thus supporting the action of directional selection on wing size. In addition, directional selection acts on wing shape; that is, migrant females differ significantly from resident females in their wing angles. However, the results do not support the action of stabilizing selection: there was no significant variance between migrant and resident monarchs in their wing size or shape. Also, migrant females and males differed in wing condition as a result of differences in flight behaviour. In conclusion, eastern North American monarchs offer a good opportunity to study the selective pressures of migration on wing morphology and how different migratory routes and behaviours are linked to wing morphology and condition. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 605–616.  相似文献   

18.
Feather holes are small (0.5–1?mm in diameter) deformities that appear on the vanes of flight feathers. Such deformities were found in many bird species, including galliforms and passerines. Holey flight feathers may be more permeable to air, which could have a negative effect on their ability to generate aerodynamic forces. However, to date the effects of feather holes on flight performance in birds remained unclear. In this study we investigated the relationship between the number of feather holes occurring in the wing or tail feathers and short term flight performance traits – aerial manoeuvrability, maximum velocity and maximum acceleration – in barns swallows, which are long distance migrating aerial foragers. We measured short-term flight performance of barn swallows in a standardized manner in flight tunnels. We found that acceleration and velocity were significantly negatively associated with the number of holes in the wing flight feathers, but not with those in the tail feathers. In the case of acceleration the negative relationship was sex specific – while acceleration significantly decreased with the number of feather holes in females, there was no such significant association in males. Manoeuvrability was not significantly associated with the number of feather holes. These results are consistent with the hypothesis that feather holes are costly in terms of impaired flight. We discuss alternative scenarios that could explain the observed relationships. We also suggest directions for future studies that could investigate the exact mechanism behind the negative association between the number of feather holes and flight characteristics.  相似文献   

19.
In insects, wing shape and body size are correlated with several aspects of behaviour, and the optimal morphology of wings is a trade-off between a number of functional demands in relation to behaviour (e.g. foraging, migration and sexual display). Dragonflies are spectacularly skilful flyers and present a range of different wing shapes, but to date, no detailed studies have been conducted in this group on wing length allometry in relation to body size. In this paper, we use published data on body length and wing length in all European and North American dragonflies to investigate differences in wing length allometries among Odonata taxa (suborders and families) and to relate these to behavioural patterns. We found different wing allometries between Zygoptera and Anisoptera, which are probably related to the flight mode and wing form of the two suborders. Among the Anisoptera, the Libellulidae showed a distinct wing length allometry from all other anisopteran families and migrants differed from non-migrant species. The first dichotomy is likely to reflect the adaptation of wing morphology of Libellulidae to sit-and-wait behaviour and to brief foraging flights (most species of this family are perchers) with respect to all other families, members of which are typically flyers. The second dichotomy reflects the trend of migrating species to have relatively longer wings than non-migrating members of the same family. Finally, wing length allometry differed among all the zygopteran families analysed, and this pattern suggested that each family evolved a particular wing morphology in response to peculiarities in behaviour, habitat and flight mode.  相似文献   

20.
Flight has conferred an extraordinary advantage to some groups of animals. Wing shape is directly related to flight performance and evolves in response to multiple selective pressures. In some species, wings have ornaments such as pigmented patches that are sexually selected. Since organisms with pigmented wings need to display the ornament while flying in an optimal way, we might expect a correlative evolution between the wing ornament and wing shape. We examined males from 36 taxa of calopterygid damselflies that differ in wing pigmentation, which is used in sexual displays. We used geometric morphometrics and phylogenetic comparative approaches to analyse whether wing shape and wing pigmentation show correlated evolution. We found that wing pigmentation is associated with certain wing shapes that probably increase the quality of the signal: wings being broader where the pigmentation is located. Our results also showed correlated evolution between wing pigmentation and wing shape in hind wings, but not in front wings, probably because hind wings are more involved in signalling than front wings. The results imply that the evolution of diversity in wing pigmentations and behavioural sexual displays might be an important driver of speciation due to important pre-copulatory selective pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号