首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elution characteristics of lovastatin were studied by varying the composition of mobile phase in both isocratic and gradient elution modes to comprehend the role of organic modifier and acidifier on the overall analysis time and retention time of individual forms of lovastatin. Acetonitrile has influenced on the overall analysis time, whereas the acidifier determines the retention time of hydroxy acid form of lovastatin and the retention time gap between the individual forms. A combination of acetonitrile and 0.1% trifluoroacetic acid (TFA) (60:40, v/v) in isocratic elution mode eluted both hydroxy acid and lactone forms of lovastatin at 4.5 and 5.4?min, respectively. This appears to be a better approach for the separation of pharmaceutical and clinical lovastatin samples. At isocratic elution mode, a mixture of acetonitrile and either 0.05% TFA or 0.1% H3PO4 of 60:40 (v/v) has eluted both hydroxy acid and lactone forms of lovastatin at 10?±?0.5 and 17?±?0.5?min, respectively. This is suitable for the fermentation-derived samples or for the complex mixtures of structural analogs. The fermentation broth (pH not adjusted) extracted with ethyl acetate at a ratio of 1:1 (v/v) at 60°C for 30?min was the optimal extraction condition for lovastatin.  相似文献   

2.
The analyses of peak shapes in chromatography are useful in operating chromatographic system. The asymmetry and sharpness of a chromatographic peak are estimated by the reversed-phase adsorption of two standard peptides (angiotensin II bradykinin) on C18. In this work, the average particle diameters of C18 were 5 and 15 μm, while the pore sizes were 100 and 300 Å. The composition of the mobile phase was 50/50 vol. % of a binary mixture of acetonitrile and water with 0.1% TFA, and the particles were packed in a stainless column (4.6×150 mm). The third and the fourth central movement were calculated from the chromatographic elution curves by moment analysis. The peak asymmetry was determined by two theoretical calculations: the asymmetry factor by elution peak analysis and skewness with moment analysis. The sharpness was estimated by the fourth central moment. In this work, the most acceptable skewness was calculated when the pore size was 300 Å. The large excess was observed on small pore size.  相似文献   

3.
张阔  刘欠  王增禄  张英起  陈五岭 《生物磁学》2011,(24):4971-4974
目的:研究高效液相色谱法(HPLC)分析伤口愈合肽的方法。方法:HPLC测定用Kromasil-C18色谱柱(250mm*4.6mm,5滋m),拟确定的色谱条件为:二元线性梯度洗脱,流动相A:0.1%三氟乙酸水溶液;流动相B:0.1%三氟乙酸50%乙腈,流速为1ml/min,检测波长为215nm。结果:线性梯度洗脱条件:起始流动相为A70%:B30%,洗脱最终流动相为A30%:B70%;伤口愈合肽浓度在0.1-0.3mg/ml内,其标准曲线的相关系数为R2=0.9998,回归方程为:y=237.19x-0.3249;日内、日间相对标准偏差都不大于2%;重复性的相对标准偏差都小于药典规定的2.0%。结论:该方法稳定性、重复性良好,符合伤口愈合肽新药研究的实验检测要求。  相似文献   

4.
Two different columns—Lux Cellulose-1 and Chiralpak CBH—were evaluated for their chiral recognition abilities for eight drugs comprising three β-blockers, one antacid, and four cathinones in polar-organic elution mode and reversed-phase elution mode, respectively. The factors that affected the enantioseparation were tested and optimized to develop a suitable chiral separation method whose LC conditions are compatible with MS detection. In polar-organic elution mode with the Lux Cellulose-1 column, methanol and acetonitrile were tested as the main components of the mobile phase. In addition, the effects of adding isopropanol as organic modifier, acidic additives (formic acid), and basic additives (diethylamine) were evaluated. In reversed-phase elution mode with the Chiralpak CBH column, the effect of type and concentration of organic modifier (isopropanol, acetonitrile, and methanol), the mobile phase pH (6.4 and 5.0), and buffer concentration (1mM-20mM ammonium acetate) were evaluated. The best enantioseparation was achieved with the Chiralpak CBH column with a mobile phase composed of 5mM ammonium acetate aqueous (pH = 6.4)/methanol (95/5, v/v) at a flow rate of 0.1 mL/min and a temperature of 30°C. Under these conditions, six of eight chiral drugs were baseline separated.  相似文献   

5.
A novel, rapid and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous quantification of gefitinib and its predominant metabolite, O-desmethyl gefitinib in human plasma. Chromatographic separation of analytes was achieved on an Alltima C18 analytical HPLC column (150 mm × 2.1 mm, 5 μm) using an isocratic elution mode with a mobile phase comprised acetonitrile and 0.1% formic acid in water (30:70, v/v). The flow rate was 300 μL/min. The chromatographic run time was 3 min. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionization (ESI) in positive mode. Linearity was demonstrated in the range of 5-1000 ng/mL for gefitinib and 5-500 ng/mL for O-desmethyl gefitinib. The intra- and inter-day precisions for gefitinib and O-desmethyl gefitinib were ≤10.8% and the accuracies ranged from 89.7 to 104.7% for gefitinib and 100.4 to 106.0% for O-desmethyl gefitinib. This method was used as a bioanalytical tool in a phase I clinical trial to investigate the possible effect of hydroxychloroquine on the pharmacokinetics of gefitinib. The results of this study enabled clinicians to ascertain the safety of the combination therapy of hydroxychloroquine and gefitinib in patients with advanced (Stage IIIB-IV) non-small cell lung cancer (NSCLC).  相似文献   

6.
The antimalarial drug amodiaquine is extensively metabolized to N-desethylamodiaquine (DEAQ) by cytochrome P450 2C8 (CYP2C8). DEAQ formation is an enzyme specific reaction that is used to quantify in vitro CYP2C8 activity. A rapid and sensitive method for the determination of DEAQ in human liver microsomes was developed using hydrophilic interaction liquid chromatography/tandem mass spectrometry (HILIC-MS/MS). Microsomal incubation samples were processed by protein precipitation with acetonitrile. The analytes were separated on a BETASIL Silica-100 (50mmx2.1mm, 5microm) column by isocratic elution at a flow rate of 220microl/min with a mobile phase consisting of 85% acetonitrile containing 5mM ammonium acetate and 0.1% formic acid. Detection was by positive electrospray ionization on a TSQ Quantum Discovery triple quadrupole mass spectrometer operated in the selective reaction monitoring mode. The precursor-product ion pair was m/z 328-->283 for DEAQ and m/z 331-->283 for DEAQ-d(3). The lower limit of quantification was 10nM for DEAQ and linearity was observed over the concentration range of 10-1500nM. Intra- and inter-day accuracy and precision were within 3.4 and 7.0%, respectively. The method was successfully applied to CYP2C8 drug metabolism studies in pooled human liver microsomes.  相似文献   

7.
目的:用RP-HPLC方法对注射用重组人尿激酶原制剂蛋白含量进行定量分析。方法:用反相C18柱、0.1%TFA水溶液与0.1%乙腈进行梯度洗脱,280nm波长紫外检测器监测;以重组人尿激酶原同质标准品作为对照品,根据进样量和相应的峰面积建立标准曲线方程,将待测定样品的峰面积代入标准曲线方程,可测得蛋白含量。结果:按照方法学验证要求对此方法进行了专属性、检测限、定量限、线形、精密度(重复性、中间精密度)、准确度(回收率)考察,线性范围为9~27μg,回收率在97%以上,RSD2.0%,完全满足对制剂蛋白的定量需求。结论:本方法准确,适用于注射用重组人尿激酶原成品制剂蛋白定量测定。  相似文献   

8.
Ropinirole, 4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one, is a potent anti-Parkinson’s disease drug developed by SmithKline Beecham Pharmaceuticals. Capillary liquid chromatography (CLC) was used for the separation and quantification of ropinirole and its five related impurities, potentially formed during its synthesis. A simultaneous optimization of three mobile phase parameters, i.e., pH, buffer concentration and acetonitrile content was performed employing an experimental design approach which proved a powerful tool in method development. The retention factors of the investigated substances in different mobile phases were determined. Baseline resolution of the six substances on a C18 reversed stationary phase was attained using a mobile phase with an optimized composition [acetonitrile–8.7 mM 2-(N-morpholino)ethanesulfonic acid adjusted to pH 6.0 (55:45, v/v)]. It was shown that CLC, operated in the isocratic mode under the mobile phase flow-rate of 4 μl/min, can determine the level of these impurities, down to a level of 0.06% of the main component within 25 min.  相似文献   

9.
A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.  相似文献   

10.
A highly sensitive and specific liquid chromatography/tandem mass spectrometric (LC-MS/MS) method for investigating the pharmacokinetics of adrafinil in rats was developed. Rat serum pretreated by solid-phase extraction (SPE) was analyzed by LC-MS/MS with an electrospray ionization (ESI) interface. The mobile phase consisted of acetonitrile:water:acetic acid (35:65:0.1, v/v/v) in an isocratic elution mode pumped at 1.0ml/min. The analytical column (250mmx4.6mm i.d.) was packed with Kromasil C(18) material (5.0mum). The standard curve was linear from 16.5 to 5000ng/ml. The assay was specific, accurate (R.S.D.<2.6%), precise and reproducible (within- and between-day precisions R.S.D. <7.0% and <9.0%, respectively). Adrafinil in rat serum was stable over three freeze-thaw cycles at ambient temperature for 6h. The method had a lower limit of quantitation of 16.5ng/ml, which offered high sensitivity for the determination of adrafinil in serum. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats.  相似文献   

11.
The present work reports capillary liquid chromatographic column switching methodology tailored for fast, sensitive and selective determination of 1-hydroxypyrene (1-OHP) in human urine using micro-electrospray ionization time-of-flight mass spectrometric detection. Samples (100 microl) of deconjugated, water diluted and filtered urine samples were loaded onto a 150 microm I.D.x 30 mm 10 microm Kromasil C(18) pre-column, providing on-line sample clean-up and analyte enrichment, prior to back flushed elution onto a 150 microm I.D.x 100 mm 3.5 microm Kromasil C(18) analytical column. Loading flow rates up to 100 microl/min in addition to the use of isocratic elution by a mobile phase composition of acetonitrile/water (70/30, v/v) containing 5 mM ammonium acetate provided elution of 1-OHP within 5.5 min and a total analysis time of less than 15 min with manual operation. Ionization was performed in the negative mode and 1-OHP was observed as [M-H](-) at m/z 217.08. The method was validated over the concentration range 0.2-40 ng/ml 1-OHP in pre-treated urine, yielding a coefficient of correlation of 0.997. The within-assay (n=6) and between-assay (n=6) precisions were in the range 6.4-7.3 and 7.0-8.1%, respectively, and the recoveries were in the range 96.2-97.5 within the investigated concentration range. The method mass limit of detection was 2 pg, corresponding to a 1-OHP concentration limit of detection of 20 pg/ml (0.09 nmol/l) diluted urine or 0.3 ng/ml (1.35 nmol/l) urine.  相似文献   

12.
A method for the reversed-phase high-performance liquid chromatographic separation of zinc protoporphyrin and porphyrin carboxylic acids with fluorescence detection and its application are described. A mu Bondapak C18 column was employed for all the experiments in this study. The method required a pretreatment of the column with a two-component mobile phase containing 0.1 M NaH2PO4 in acetonitrile (28:15, v/v, pH 5.3) for 10 min prior to sample injection. Separation was achieved isocratically by increasing the concentration of acetonitrile in the mobile phase (0.1 M NaH2PO4:acetonitrile, 18:130, v/v, pH 5.3) 4 min after injection to complete the elution. The flow rates and the period of pretreatment of the column were studied to optimize the separation. The method was applied to determining zinc protoporphyrin and porphyrin carboxylic acids of heme biosynthesis in urine.  相似文献   

13.
A method for determining a group of phthalic esters (PAEs) in physiological saline solutions has been developed. The PAEs studied were dimethyl phthalate, diethyl phthalate, butyl benzyl phthalate and dibutyl phthalate. These groups of phthalates were determined by liquid chromatography–electrospray ionization-tandem mass spectrometry, working in positive ion mode. The compounds were separated by liquid chromatography working in gradient mode with acetonitrile–ultrapure water as a mobile phase. The separation was performed starting with 5% of acetonitrile and increasing to 75% in 5 min, followed by isocratic elution for 8 min. The method was precise (with relative standard deviation (RSD) from 1.0 to 6.8%) and sensitive, with LODs of 0.05, 0.38, 0.05 and 0.82 μg L?1 for DMP, DEP, BBP and DBP, respectively. The proposed analytical method has been applied to determine these compounds in different physiological saline solutions commercialized in plastic bottles.  相似文献   

14.
A direct chiral liquid chromatography–circular dichroism (LC‐CD) method was developed for the simple and rapid identification of N‐octylnortadalafil [(6R, 12aR)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione; RR‐OTDF] and its stereoisomers in dietary supplements. Samples were extracted with methanol. Compounds were then separated by chiral LC‐CD using Chiralcel OD‐RH (4.6 × 1 50 mm, 5 µm) with 5 mM ammonium formate (pH 3)/0.1% formic acid in acetonitrile (95:5, v/v) mixture solution (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The isocratic elution used was mobile phase A / mobile phase B (3:7, v/v) at a flow rate of 1 ml/min. The column temperature was held at 30°C. RR‐OTDF and its stereoisomers were separated within 20 min with the resolution factors being over 2.0. Using this method, RR‐OTDF and (6R, 12aS)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione were detected in a dietary supplement. Chirality 28:204–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
An isocratic high-performance liquid chromatographic (HPLC) method for simultaneous separation of the components in the antimalarial combination drug Malarone® with UV detection is described. An HPLC system using a mixed mode column composed of 50% C18 phase and 50% strong cation-exchanger has been optimised for the simultaneous separation of atovaquone, proguanil and its two main metabolites. The mobile phase was optimised for factors such as pH, counter ion concentration and acetonitrile. Elimination of interferences from other antimalarial drugs was achieved by adding sodium perchlorate to the mobile phase. With a mobile phase of acetonitrile-phosphate buffer (60:40, v/v) pH 6.8, 50.7 mmol l−1 K+ and 10 mmol l−1 Na·ClO4, separation was achieved within a run time shorter than 17 min.  相似文献   

16.
A novel vancomycin silica hydride stationary phase was synthesized and the particles of 1.8 µm were packed into fused silica capillaries of 75 µm internal diameter (I.D.). The chiral stationary phase (CSP) was tested for the separation of some derivatized amino acid enantiomers by using nano‐liquid chromatography (nano‐LC). Some experimental parameters such as the type and the content of organic modifier, the pH, and the concentration of the buffer added to the mobile phase were modified and the effect on enantioselectivity, retention time, and enantioresolution factor was studied. The separation of selected dansyl amino acids (Dns‐AAs), e.g., Asp, Glu, Leu, and Phe in their enantiomers was initially achieved utilizing a mobile phase containing 85% (v/v) methanol (MeOH) and formate buffer measuring the enantioresolution factor and enantioselectivity in the range 1.74–4.17 and 1.39–1.59, respectively. Better results were obtained employing a more polar organic solvent as acetonitrile (ACN) in the mobile phase. Optimum results (Rs 1.41–6.09 and α 1.28–2.36) were obtained using a mobile phase containing formate buffer pH 2.5/water/MeOH/ACN 6:19:12.5:62.5 (v/v/v/v) in isocratic elution mode at flow rate of 130 nL/min. Chirality 27:767–772, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
新型柱前衍生试剂分析草甘膦的高效液相色谱研究   总被引:1,自引:0,他引:1  
以2,5-二甲氧基苯磺酰氯(DMOSC)为柱前衍生化试剂,建立了柱前衍生草甘膦的紫外检测反相高效液相色谱法,并优化了衍生化条件,得最佳条件:衍生温度35℃,时间15 min,pH 10.0,草甘膦与DMOSC的摩尔比为1∶6。HPLC分析条件:采用Kromasil C18柱,流速1.0 mL/min,柱温30℃,检测波长220 nm,流动相为甲醇-乙腈-磷酸盐缓冲溶液(0.02 mol/L、pH 5.5),三者的体积比为15∶5∶80。结果表明:草甘膦质量浓度在5~100μg/mL范围内线性关系良好,相关系数为0.996 2,检测限为0.067μg/mL。实验表明该方法反应条件温和,灵敏度高,衍生产物稳定。  相似文献   

18.
A simple and fast method intended for large-scale bioequivalence studies for the determination of glibenclamide in plasma samples is presented. The chromatographic separation was achieved on a monolithic octadecyl chemically modified silicagel column and a mobile phase containing 42% aqueous 0.1% HCOOH solution (v/v) and 58% acetonitrile, at a flow rate of 1 mL/min, in isocratic conditions. Preparation of plasma samples was based on protein precipitation with acetonitrile. Gliquidone was used as internal standard. The target analytes were transferred into an ion trap mass analyzer via an atmospheric pressure chemical ionization interface. The precursor ions with mass 494 a.m.u. for glibenclamide and 528 a.m.u. for gliquidone were isolated, while in the second MS stage product ions 369 a.m.u. and 403 a.m.u., respectively, were monitored. The analytical process was characterized by a low limit of quantitation of 1.5 ng/mL. The mean recovery for glibenclamide was 98.1+/-2.8% over a concentration interval ranging from 1 to 500 ng/mL. Intra-day and inter-day precision calculated over 2-400 ng/mL concentration interval ranged from 15.4% to 3.4%. Inter-sequence accuracy expressed as % bias from theoretical concentration values over the concentration interval of 10-400 ng/mL fall within -13.9% and +14.6%. The method was applied for evaluation of the bioequivalence between two formulations containing 3.5mg glibenclamide per dose.  相似文献   

19.
A simple method for the separation of the major components of commercial gentamicin sulfate (C-1, C-1a, C-2, C-2a) by high-performance liquid chromatography (HPLC) on an analytical and a semipreparative scale was developed. The method utilized ion-pair reversed-phase chromatography, isocratic elution with an aqueous solution containing 9% trifluoroacetic acid and 2.5% acetonitrile as the mobile phase at a flow rate of 2 and 9 mL/min for analytical and semipreparative columns, respectively. Detection was carried out at 213 nm without derivatization. The protonation pattern of the separated gentamicins was determined by potentiometry and 15N and 1H NMR. The full proton NMR assignment for gentamicin C-1 was obtained through the use of 1H 1D and 2D 1H-1H COSY measurements.  相似文献   

20.
The competitive adsorption isotherms of two closely related peptides, bradykinin and kallidin, were measured by frontal analysis on a Zorbax SB-C18 microbore column. An aqueous soluton at 20% acetonitrile (0.1% TFA) was used as the mobile phase. The competitive isotherm data were fitted to four different models: Langmuir, Bilangmuir, Langmuir-Freundlich, and Toth. These data fitted best to a Bilangmuir isotherm model. The influence of the pressure on the retention factors of the two peptides was found to be small and was not investigated in detail. The band profiles of large samples of the single components and of their mixtures were recorded. The overloaded profiles calculated using either the equilibrium-dispersive or POR model are in excellent agreement with the experimental profiles in all cases. Our results confirm that the competitive isotherm data derived from mixtures may suffice for a reasonably accurate prediction of the band profiles of all mixtures of the two components, provided their composition is close to 1/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号