首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.  相似文献   

2.
Summary Plasmids pUR291 and pNZ521 containing lacZ gene, maturation protein and proteinase P genes, were transferred into X. campestris either by conjugation or by transformation. Plasmid pNZ521 was also conjugally transferred into X. campestris XMT1 a transformant carrying plasmid pUR291. All the constructed strains were evaluated for xanthan gum production in either a medium of 50% whey or the same medium supplemented with 1.5% lactose or 1.5% glucose. Mixed cultures either with transconjugants or with transformants were tested for xanthan gum production as well.  相似文献   

3.
Genetic Construction of Lactose-Utilizing Xanthomonas campestris   总被引:4,自引:2,他引:2       下载免费PDF全文
Xanthomonas campestris, the producer of xanthan gum, possesses a β-galactosidase of very low specific activity. Plasmid pGC9114 (RP1::Tn951), generated by the transposition of the lactose transposon Tn951 to RP1, was conjugally transferred into XN1, a nalidixic acid-resistant derivative of X. campestris NRRL B-1459S-4L. Transfer occurred on membrane filters and in broth. The β-galactosidase gene of Tn951 was expressed in X. campestris. The specific activity of β-galactosidase in transconjugants was over 200-fold higher than that in XN1, and transconjugants grew as well in lactose-based media as in glucose-based media. The lactose-utilizing transconjugants could potentially be used to produce xanthan gum from cheese whey.  相似文献   

4.
Xanthomonas campestris pv. translucens IFO13599 could produce xanthan gum (18.5 mg/100 mg, lactose) with lactose as the growth substrate in spite of a low level of β-galactosidase. This productivity corresponded to one-fifth that with glucose. This strain could also produce ice-nucleating material having an ice-nucleating temperature, T 50, of −2.8 °C with xanthan gum in the culture broth. We found that this strain produced both materials in whey medium from which the insoluble components had been removed. The production of xanthan with ice-nucleating material reached a maximum after cultivation for 168 h under optimum conditions. Furthermore, the xanthan obtained had a low viscosity because of its variant structure revealed, by TLC and HPLC analyses, to be lacking pyruvic acid. Furthermore, we concluded that this mixture had considerable potential as a regeneratic agent, when compared to other regeneratic agents such as carboxymethylcellulose. Received: 29 August 1997 / Received revision: 17 November 1997 / Accepted: 18 November 1997  相似文献   

5.
Twelve genes coding for assembly, acetylation, pyruvylation, polymerization, and secretion of the polysaccharide xanthan gum are clustered together on the chromosome of the bacterium Xanthomonas campestris. These genes (gumBCDEFGHIJKLM) are sufficient for synthesis of xanthan gum when placed in bacteria from a different genus, Sphingomonas. The polysaccharide from the recombinant microorganism is largely indistinguishable, structurally and functionally, from native xanthan gum. These results demonstrate that a complex pathway for biosynthesis of a specific polysaccharide can be acquired by a single inter-generic transfer of genes between bacteria. This suggests the biological and commercial feasibility of synthesizing xanthan gum or other polysaccharides in non-native hosts. Received 23 October 1996/ Accepted in revised form 14 April 1997  相似文献   

6.
Xanthomonas genus possesses a low level of β-galactosidase gene expression and is therefore unable to produce xanthan gum in lactose-based media. In this study, we report the emergence of some natural field strains of Xanthomonas citri subsp. citri (Xcc) capable to use lactose as a sole carbon source to produce xanthan gum. From 210 Xcc strains isolated from key lime (C. aurantifolia), 27 showed the capacity to grow on lactose containing medium. Xcc lactose consuming strains demonstrated a good level of xanthan production. Amongst all, NIGEBK37 produced the greatest (14.62 g/l) amount of xanthan gum in experimental laboratory conditions. By evaluating the viscosity of the biopolymer at 25 °C, it was demonstrated that xanthan synthesized by strain NIGEBK37 has the highest viscosity (44,170.66 cP). Our results were indicative for the weakness of a commercial strain of Xanthomonas campestris pv. Campestris DSM1706 (Xcc/DSM1706) to produce xanthan in lactose containing medium.  相似文献   

7.
Summary Plasmid pNZ521, containing phospho--galactosidase, maturation protein and proteinase P genes, was conjugally transferred for the first time fromL.lactis intoX.campestris XLM1.After 20 generations 67% of the tested colonies were resistant to chloramphenicol. In the transconjugant proteinase activity appeared in the growth medium, whereas inL.lactis MG1820 it was extracted from the cell wall. Proteinase activity and production of xanthan gum were studied in different concentrations of whey. Xanthan gum production was found much higher in all cultures with the transconjugant strain XLM1521.  相似文献   

8.
Xanthomonas campestris pv. campestris possesses a low level of beta-galactosidase and therefore is not able to grow and produce significant amounts of xanthan gum in a medium containing lactose as the sole carbon source. In this study, a beta-galactosidase expression plasmid was constructed by ligating an X. campestris phage phi LO promoter with pKM005, a ColE1 replicon containing Escherichia coli lacZY genes and the lpp ribosome-binding site. It was then inserted into an IncP1 broad-host-range plasmid, pLT, and subsequently transferred by conjugation to X. campestris 17, where it was stably maintained. The lacZ gene under the control of the phage promoter was expressed at a high level, enabling the cells to grow in a medium containing lactose. Production of xanthan gum in lactose or diluted whey by the engineered strain was evaluated, and it was found to produce as much xanthan gum in these substrates as the cells did in a medium containing glucose.  相似文献   

9.
Summary Mutants ofXanthomonas campestris B 1459 were isolated that are defective in secretion of both cellulase and amylase. Both enzymes accumulated in the periplasmic space. The defects in secretion of cellulase or amylase were partly overcome by introducing into the mutants specific multiple copies of DNA cloned fromX. campestris, and presumed to code for cellulase or amylase enzymes. The mutant strains also showed reduced amounts of extracellular pectinase and protease activities, as if the mutants were generally defective for secretion of extracellular enzymes. The mutants showed reduced pathogenesis for turnip seedlings. The secretion-defective mutants may allow production of xanthan gum with reduced cellulose, pectin, protein and starch-degrading enzyme activities, thereby allowing more widespread mixing of microbially produced xanthan gum with these commercially important water-soluble polymers.  相似文献   

10.
Xanthomonas campestris pv. campestris possesses a low level of beta-galactosidase and therefore is not able to grow and produce significant amounts of xanthan gum in a medium containing lactose as the sole carbon source. In this study, a beta-galactosidase expression plasmid was constructed by ligating an X. campestris phage phi LO promoter with pKM005, a ColE1 replicon containing Escherichia coli lacZY genes and the lpp ribosome-binding site. It was then inserted into an IncP1 broad-host-range plasmid, pLT, and subsequently transferred by conjugation to X. campestris 17, where it was stably maintained. The lacZ gene under the control of the phage promoter was expressed at a high level, enabling the cells to grow in a medium containing lactose. Production of xanthan gum in lactose or diluted whey by the engineered strain was evaluated, and it was found to produce as much xanthan gum in these substrates as the cells did in a medium containing glucose.  相似文献   

11.
Xanthan gum is a polysaccharide that is widely used as stabilizer and thickener with many industrial applications in food industry. Our aim was to estimate the ability of Xanthomonas campestris ATCC 13951 for the production of xanthan gum by using whey as a growth medium, a by-product of dairy industry. X. campestris ATCC 13951 has been studied in batch cultures using a complex medium for the determination of the optimal concentration of glucose, galactose and lactose. In addition, whey was used under various treatment procedures (de-proteinated, partially hydrolyzed by β-lactamase and partially hydrolyzed and de-proteinated) as culture medium, to study the production of xanthan in a 2 l bioreactor with constant stirring and aeration. A production of 28 g/l was obtained when partially hydrolysed β-lactamase was used, which proved to be one of the highest xanthan gum production reported so far. At the same time, an effort has been made for the control and selection of the most appropriate procedure for the preservation of the strain and its use as inoculant in batch cultures, without loss of its viability and its capability of xanthan gum production. The pre-treatment of whey (whey permeate medium hydrolyzed, WPH) was very important for the production of xanthan by the strain X. campestris ATCC 13951 during batch culture conditions in a 2 l bioreactor. Preservation methods such as lyophilization, cryopreservation at various glycerol solution and temperatures have been examined. The results indicated that the best preservation method for the producing strain X. campestris ATCC 13951 was the lyophilization. Taking into account that whey permeate is a low cost by-product of the dairy industry, the production of xanthan achieved under the studied conditions was considered very promising for industrial application.  相似文献   

12.
A comparison of the use of the quaternary ammonium salts, cetyltrimethylammonium bromide (CTAB) and the commercial mixture Cetavlon, for the isolation of xanthan gum from fermentations of Xanthomonas campestris indicated that the former was the more efficient complexating agent. Although in both cases more than the stoichiometric requirement was necessary to achieve quantitative recovery of the polysaccharide, CTAB left only 1·7% material in the supernatant from the precipitation of xanthan gum compared to 15% left by Cetavlon. This is congruent with the view that the efficiency of quaternary ammonium salts increases with increased paraffin chain length.An assessment of the use of Cetavlon for the isolation of xanthan gum in a recycle procedure showed that an 11·5% loss of precipitant per cycle occurred. In the procedure, the xanthan gum was precipitated as the purified K+ salt from a dispersion of its quaternary ammonium complex in 2-propanol. Concentration of the 2-propanol wash permitted recovery of the quaternary ammonium salt.  相似文献   

13.
The effect of the glucose concentration on xantham gum production by Xanthomonas campestris ATCC 13951 was studied resulting that the glucose concentration between 30 and 40 g/kg broth was best for xanthan gum production. Controlling the glucose concentration at between 30 and 40 g/kg broth by intermittent addition of glucose prevented the inhibition of cell growth and the cessation of xanthan gum production, which were observation with a higher glucose concentration. By means of a glucose feeding strategy, the xanthan gum concentration reached 43 g/kg broth after 96-h cultivation.  相似文献   

14.
Xanthan gum, a microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used as a solidifying agent for plant tissue culture media. Its suitability as a substitute to agar was demonstrated for in vitro seed germination, caulogenesis and rhizogenesis of Albizzia lebbeck, androgenesis in anther cultures of Datura innoxia, and somatic embryogenesis in callus cultures of Calliandra tweedii. Culture media used for eliciting these morphogenic responses were gelled with either 1% xanthan gum or 0.9% agar. Xanthan gum, like agar, supported all these responses.  相似文献   

15.
Five newly-isolated strains of Xanthomonas campestris when compared with the standard strain, NRRL B-1459, showed higher broth viscosity and xanthan gum production. Evaluation of polysaccharide rheology is a very important determinant for selecting new xanthan-producing isolates.  相似文献   

16.
Summary Previously, we constructed a lactose-utilizing strain of Xanthomonas campestris, Xc17 (pKMLT), by cloning lacZY genes with the RK2-derived vector pLAFR1. In this study, the narrow-host-range, -galactosidase expression plasmid pKM was fused with an integration vector pS19 to form pSF14. Following insertion into Xc17, pSF14 was integrated into the host chromosome. The integration function was provided by the 0.85-kb EcoRI-PstI fragment from the filamentous phage Lf. The integration caused no adverse effect to the cells and was stable for at least 66 generations without selection. The engineered strain, Xc17::pSF14, was able to grow as well and produce as much xanthan gum in lactose medium as the wild-type cells did in glucose medium, and the Xc17(pKMLT) in lactose medium. Therefore, Xc17::pSF14 is potentially useful for xanthan production by direct use of whey lactose as the fermentation substrate. This study has advanced one more step our efforts to contruct lactose-utilizing X. campestris and confirmed the feasibility of using pS19 as an integration vector.  相似文献   

17.
Summary Several morphologically different isolates of Xanthomonas campestris pv. campestris were obtained by treatment with N-methyl-N-nitro-N-nitrosoguanidine. These variants were used to infect Brassica plants where several degrees of virulence were found. The strains were cultured in order to produce polysaccharide, which was recovered by precipitation and subjected to physical and chemical characterization. A relationship was noted between virulence and parameters such as the final viscosity of the culture, the viscosifying capacity of the polymer and the amount of acetyl substituents in the gum. Infrared spectral analysis revealed that intramolecular interaction of gum constituents could play a significant role in virulence. It is suggested that the degree of virulence could be used as a criterion for selecting and isolating producers of high quality xanthan gum.  相似文献   

18.
The superior properties of xanthan gum make it an industrial aginomoto used in many industries, especially in oil recovery. In the present work, xanthan production from glycerol by a mutant strain Xanthomonas campestris WXLB-006 reached as high as 17.8?g/L in flask culture. With the adoption of pH control, varied aeration and agitation, and varied glycerol feeding strategy, xanthan production reached 33.9?g/L in a 7-L fermenter and fermentation time decreased to 60?hr. Instead of difficultly and costly purifying glycerol, this research provides a very good case for glycerol utilization. At the same time, this is the first report on a high glycerol-tolerant strain for microbial polysaccharide production and 33.9?g/L is the highest production of xanthan gum produced from glycerol so far.  相似文献   

19.
Efficient production of xanthan gum by fermentation with Xanthomonas campestris NRRL B-1459 can be accomplished at concentrations of xanthan in the fermented broth > 3%. This level of more than twice that previously attained by us results from continuously controlling the fermentation pH with alkali. Only a slight decrease in fermentation rate and yield occurs. When ammonia is used for pH control, cell production more than doubles and fermentation time is shortened. However, xanthan yield is decreased by the diversion of additional sugar to growth.  相似文献   

20.
Xanthomonas campestris NRRL B-1459 and a variant E2, when preserved on agar slopes (transferred monthly) over 11 months did not deteriorate in their ability to produce xanthan in quantity and quality, as determined by culture in 500-ml baffled flasks. Variations between 8 and 14% (with respect to the average) in the final xanthan concentration were observed for the E2 and B-1459 strains, respectively. A wide range of final viscosities was obtained; these were consistent with the changes in gum concentration. Differences were more likely associated with differences in fermentation kinetics rather than being inherent to the strains. The rheological quality of both polysacharides was relatively constant throughout the time of culture maintenance. Preservation of these bacteria on agar slopes was an adequate method, in contrast to previous reports. In the period studied, strain E2 produced higher gum titres and slightly lower gum quality compared to strain B-1459. Correspondence to: E. Galindo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号