首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy) (1)H nuclear magnetic resonance spectroscopy, combined with two-dimensional (31)P-filtered (1)H-(1)H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (alpha2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (alpha1-6)-core-fucosylated or (alpha1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the site-specific location of the various glycans.  相似文献   

2.
Previous studies from this laboratory have established that lepidopteran insect cells possess the glycosylation machinery needed to assemble N-linked complex-type oligosaccharides on Asn289 of recombinant human plasminogen (r-HPg). In the present paper, we show that the nature of N289-linked glycosylation of [R561E]r-HPg expressed in Spodoptera frugiperda (IPLB-SF-21AE) cells is dependent upon the length of time of infection of the cells with the recombinant baculovirus/HPg-cDNA construct. At the earliest postinfection (p.i.) time period studied, i.e., 0-20 h, virtually all (96%) of the oligosaccharides released with glycopeptidase F from N289 of the expressed r-HPg were of the high-mannose type and comprised nearly the full range of such structures, containing 3-9 mannose units. At a time window of 60-96 h, p.i., essentially all of the oligosaccharides (92% of the total) assembled on N289 of rHPg were of the biantennary, triantennary, and tetraantennary complex classes, with varying extents of outer arm completion. At an intermediate time period window, of 20-60 h, p.i., a mixture of complex-type oligosaccharides, totaling approximately 77% of the glycans, with various levels of branching and outer arm completion, and high-mannose type of oligosaccharides, totaling approximately 23% of the glycans, was assembled on N289 of the r-HPg produced. These studies demonstrate that lepidopteran insect cells contain the glycosyltransferase genes required for assembly of N-linked complex oligosaccharide and that these transferases are utilized under proper conditions. The time dependency of the assembly of complex-type oligosaccharides on r-HPg indicates that an activation of the appropriate glycosyl transferases and/or transferase genes can take place. Thus, one consequence of the infective process with the recombinant baculovirus/HPg-cDNA construct is to alter the normal glycosylation characteristics of insect cells and to allow complex-type oligosaccharide processing to occur.  相似文献   

3.
Structure of the carbohydrate units of human amniotic fluid fibronectin   总被引:3,自引:0,他引:3  
Human amniotic fluid fibronectin was found to contain three types of carbohydrates: complex-type N-glycosidic glycans, lactosaminoglycans, and O-glycosidic glycans. The structures of the complex-type glycans were established by carbohydrate and methylation analysis, Smith degradation, sequential exoglycosidase treatments, lectin chromatography, and DEAE-Sephadex chromatography. Lactosaminoglycans were analyzed by fast atom bombardment mass spectrometry, and the O-glycosidically-linked oligosaccharides by gas-liquid chromatography-mass spectrometry and high-pressure liquid chromatography. The results show that amniotic fluid fibronectin contains 2 mol of biantennary and 2-3 mol of triantennary, complex-type N-glycosidic glycans. Unlike the N-glycosidic glycans of human adult plasma fibronectin, which contain only traces of fucose and are completely sialylated, the glycans from amniotic fluid fibronectin are fucosylated and only partially sialylated. The complex-type N-glycosidic glycans present in amniotic fluid fibronectin also include a fractional amount (0.1 mol) of glycans with a polylactosaminyl structure. In addition, 4 mol of O-glycosidic oligosaccharides, which have not previously been described in fibronectins, were found in amniotic fluid fibronectin. The major oligosaccharides in this fraction have the structures Gal beta 1----3GalNAcol, NeuNAc alpha 2----3Gal beta 1----3GalNAcol and NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcol. O-glycosidically linked oligosaccharides were also detected in human adult plasma fibronectin but in smaller amounts than in amniotic fluid fibronectin. These results show that amniotic fluid fibronectin differs from plasma fibronectin with regard to the number of glycans attached to the polypeptide and that the glycans present in these two fibronectins differ in structure.  相似文献   

4.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

5.
N-linked glycans of wall-bound exo- β -glucanases from mung bean and barley seedlings, namely Mung-ExoI and Barley-ExoII, were characterized. The N-linked glycans of Mung-ExoI and Barley-ExoII were liberated by gas-phase hydrazinolysis followed by re-N-acetylation. Their structures were determined by two-dimensional sugar-mapping analysis and MALDI-TOF mass spectrometry. N-glycans from both glucanases were of paucimannosidic-type (small complex-type) structures, Man α 1-6(±Man α 1-3)(Xyl β 1-2)Man β 1-4GlcNAc β 1-4(±Fuc α 1-3) GlcNAc, which are known as typical vacuole-type N-glycans. The results suggest that N-glycans of cell-wall glucanase were produced by partial trimming of complex-type N-glycans by exoglycosidases during its transport from Golgi apparatus to cell walls or in the cell walls.  相似文献   

6.
This article reports the first rigorous evidence for the existence of N-glycans in Giardia intestinalis, a parasite that is a widespread human pathogen, being a major cause of enteric disease in the world. Excreted/secreted molecules of G. intestinalis are known to stimulate the immune system. Structural strategies based on MALDI and electrospray mass spectrometry were employed to examine the excreted/secreted molecules for their N-glycan content. These revealed that the major oligosaccharides released by peptide N-glycosidase F are complex-type structures and correspond to bi-, and triantennary structures without core (alpha1,6) fucosylation. The major nonreducing epitopes in these complex-type glycans are: Galbeta1-4GlcNAc (LacNAc) and NeuAc alpha2-6Galbeta1-4GlcNAc (sialylated LacNAc).  相似文献   

7.
The characteristics of glycosylation of a brain-specific glycoprotein, 1D4 antigen, and the epitope recognized by its monoclonal antibody were studied. Removal of high-mannose and hybrid types of N-linked oligosaccharides by treatment with endoglycosidase H converted the molecular mass of the 1D4 antigen from 89 kDa to 78 kDa, but did not affect its reactivity with the 1D4 monoclonal antibody. Removal of all types of N-linked oligosaccharides by treatment with glycopeptidase F or removal of both N- and O-linked oligosaccharides by chemical treatment caused both reduction of the molecular mass of the antigen to 63 kDa and loss of its reactivity with the monoclonal antibody. These results suggest that the 1D4 monoclonal antibody recognizes a complex-type oligosaccharide-related epitope specific for the 1D4 antigen. Results also showed that N-linked glycosylation was not responsible for the charge heterogeneity of the 1D4 antigen. The oligosaccharide chain-related epitope was detected in rat brain but not in mouse, rabbit, or bovine brain, but the 1D4 antigen was recognized in rat and mouse brains with antiserum (polyclonal antibodies). These findings indicate that the oligosaccharide-related epitope is species specific. Furthermore, results with neuraminidase-treated 1D4 antigen indicated that sialic acids were not involved in the oligosaccharide-related epitope. These findings suggest that the 1D4 antigen may have the oligosaccharide structure specific for rat brain and itself.  相似文献   

8.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

9.
The extent of involvement of carbohydrate structures in the mechanism of action of alpha and beta-interferon (IFN-alpha, IFN-beta) is undefined. In this report we examine the role of complex-type N-linked oligosaccharides in the response to these interferons. The response of mouse leukemia L 1210S cells, grown in the presence of swainsonine, an inhibitor of Golgi mannosidase II [Tulsiani, D. R. P., Harris, T. M. and Touster, O. (1982) J. Biol. Chem. 257, 7936-7939; Elbein A. D., Solf, R., Dorling, P. R. and Vosbeck, K. (1981) Proc. Natl Acad. Sci. USA 78, 7393-7397], to mouse IFN-alpha/beta, both with respect to antiviral and antigrowth effects, remains intact in spite of the total absence of complex-type N-linked oligosaccharides. Also, there is no difference in the response to human IFN-beta of a parental Chinese hamster ovary cell line and a mutant lacking beta-N-acetylglucosaminyltransferase I and therefore unable to synthesize complex-type N-linked oligosaccharides [Stanley, P., Callibot, V. and Siminovitch, L. (1975) Cell 6, 121-128]. These results are significant in permitting the conclusion that the carbohydrate-specific binding of IFN-alpha and IFN-beta to gangliosides cannot be due to a similarity of the ganglioside carbohydrate to that of a glycoprotein containing a complex-type N-liked oligosaccharide.  相似文献   

10.
We previously reported that zebrafishalpha1-3fucosyltrasferase 1 (zFT1) was expressed in embryos at the segmentation period, and was capable of synthesizing the Lewis x epitope [Gal beta1-4(Fuc alpha1-3)GlcNAc] [Kageyama et.al, J. Biochem., 125, 838-845 (1999)]. In the current study, we attempted to detect the enzyme products of zFT1 in zebrafish embryos. Oligosaccharides were prepared from the zebrafish embryos at 12, 18 and 48 h after fertilization and labelled with a fluorophore, 2-aminopyridine, for highly sensitive detections. Pyridylamino (PA)-oligosaccharides that were alpha1-3/4fucosidase sensitive and time-dependently expressed at 18 h after fertilization were identified as candidates for the in vivo products synthesized by zFT1. Structures of these oligosaccharides were determined by a combination of exoglycosidase digestions and two-dimensional HPLC sugar mapping to be the biantennary complex-type structures with two Lewis x epitopes: (Gal beta1-4)(0,1,2)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]}Man beta1-4GlcNAc, and (Gal beta1-4)(0,1)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]} Man beta1-4GlcNAc beta1-4GlcNAc. The presence of Lewis x structure of these oligosaccharides together with their expression time suggests that they are products of zFT1. Remarkably, most of these oligosaccharides were free form. Furthermore, we detected an endo-beta-N-acetylglucosaminidase activity in the 18 h embryo. These results suggest that the oligosaccharides synthesized by zFT1 are present in the embryo at the segmentation period in free form, owing to the liberation from glycoproteins with endo-beta-N-acetylglucosaminidase(s) and/or glycoamidase(s).  相似文献   

11.
GM3 ganglioside interacts specifically with complex-type N-linked glycans having multivalent GlcNAc termini, as shown for (1) and (2) below. (1) Oligosaccharides (OS) isolated from ConA-non-binding N-linked glycans of ovalbumin, whose structures were identified as penta-antennary complex-type with bisecting GlcNAc, having five or six GlcNAc termini (OS B1, B2), or bi-antennary complex-type having two GlcNAc termini (OS I). OS I is a structure not previously described. (2) Multi-antennary complex-type N-linked OS isolated from fetuin, treated by sialidase followed by β-galactosidase, having three or four GlcNAc termini exposed. These OS, conjugated to phosphatidylethanolamine (PE), showed clear interaction with 3H-labeled liposomes containing GM3, when various doses of OS-PE conjugate were adhered by drying to multi-well polystyrene plates. Interaction was clearly observed only with liposomes containing GM3, but not LacCer, Gb4, or GalNAcα1-3Gb4 (Forssman antigen). GM3 interaction with PE conjugate of OS B1 or B2 was stronger than that with PE conjugate of OS I. GM3 interacted clearly with PE conjugate of N-linked OS from desialylated and degalactosylated fetuin, but not native fetuin. No binding was observed to cellobiose-PE conjugate, or to OS-PE conjugate lacking GlcNAc terminus. Thus, GM3, but not other GSL liposomes, interacts with various N-linked OS having multiple GlcNAc termini, in general. These findings suggest that the concept of carbohydrate-to-carbohydrate interaction can be extended to interaction of specific types of N-linked glycans with specific GSLs. Natural occurrence of such interaction to define cell biological phenomena is under investigation. All solvent ratios are by volume. An erratum to this article can be found at  相似文献   

12.
P B Ahrens  H Ankel 《Biochimie》1988,70(11):1619-1625
Chinese hamster ovary cell lines with different types of N-linked oligosaccharides were tested as targets for control and lymphokine treated natural killer (NK) cells. The targets tested were parent cells, Lec1 mutants and Lec4 mutants. Due to an apparent defect in GlcNAc transferase V, Lec4 cells produce complex-type N-linked oligosaccharides devoid of GlcNAc beta(1-6) linked branches. Lec1 cells form only high mannose-type N-linked oligosaccharides because they lack GlcNAc transferase I activity. Lec1 cells are very sensitive to lysis by beta-interferon treated human NK cells, but both parent and Lec4 cells are resistant to NK lysis. The ability to discriminate between parent and Lec1 targets was demonstrated with untreated control effectors as well as those which were pretreated with either beta-interferon, gamma-interferon or interleukin-2. Both control and lymphokine-boosted NK cells exhibit much greater lytic activity against targets having only high mannose-type N-linked oligosaccharides. Five oligosaccharide structures resembling those found on N-linked glycoproteins were tested for their ability to block NK lysis of Lec1 targets. Only the high mannose-type glycopeptide from 7S soybean glycoprotein was inhibitory in the mu molar range. At the same concentration, none of the complex-type oligosaccharides had any effect on lytic activity. The results suggest that a high mannose-type N-linked oligosaccharides is recognized at some step in NK cell-mediated lysis.  相似文献   

13.
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.  相似文献   

14.
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.  相似文献   

15.
Zona pellucida (ZP), the extracellular glycocalyx that surrounds the mammalian egg plasma membrane, is a relatively simple structure consisting of three to four glycoproteins. In the mouse, the ZP is composed of three glycoproteins, namely ZP1 (200 kDa), ZP2 (120 kDa), and ZP3 (83 kDa). Extensive studies in this species have resulted in the identification of primary (mZP3) and secondary (mZP2) binding sites for spermatozoa. The two zona components are highly glycosylated containing N-linked and O-linked glycan units. In an attempt to characterize N-linked glycan units, mZP2 and mZP3 were purified and the N-linked carbohydrate chains were released by exhaustive digestion with N-glycanase. The released oligosaccharides (OSs) were radiolabeled by reduction with NaB3H4 and resolved by gel filtration on a column of Bio-Gel P-4. The OSs separated into several peaks indicating the presence of a variety of N-linked glycans. Interestingly, the radioactive peaks resolved from mZP2 and mZP3 were quite different, a result suggesting qualitative and quantitative differences in the glycans. The [SH]-labeled glycans present in mZP2 and mZP3 were pooled separately and fractionated by serial lectin chromatography. Experimental evidence included in this report strongly suggests that mZP3 (but not mZP2) contains polylactosaminyl glycan with terminal, nonreducing alpha-galactosyl residues. The mZP3 glycans eluted from the immobilized lectin columns were further characterized by lectin and sizing column chromatography before or after digestion with endo-/ exo-glycohydrolases. Data revealed the presence of a variety of OSs, including poly-N-acetyllactosaminyl, bi-, tri-, and tetraantennary complex-type, and high-mannose-type glycans. Taken together, these results provide additional evidence on the complex nature of the glycan chains present on mZP glycoconjugates.  相似文献   

16.
Oligosaccharides from human and bovine milk fat globule membranes were analyzed by LC-MS and LC-MS/MS. Global release of N-linked and O-linked oligosaccharides showed both to be highly sialylated, with bovine peak-lactating milk O-linked oligosaccharides presenting as mono- and disialylated core 1 oligosaccharides (Galbeta1-3GalNAcol), while human milk had core type 2 oligosaccharides (Galbeta1-3(GlcNAcbeta1-6)GalNAcol) with sialylation on the C-3 branch. The C-6 branch of these structures was extended with branched and unbranched N-acetyllactosamine units terminating in blood group H and Lewis type epitopes. These epitopes were also presented on the reducing terminus of the human, but not the bovine, N-linked oligosaccharides. The O-linked structures were found to be attached to the high molecular mass mucins isolated by agarose-polyacrylamide composite gel electrophoresis, where MUC1 and MUC4 were present. Analysis of bovine colostrum showed that O-linked core 2 oligosaccharides are present at the early stage (3 days after birth) but are down-regulated as lactation develops. This data indicates that human milk may provide different innate immune protection against pathogens compared to bovine milk, as evidenced by the presence of Lewis b epitope, a target for the Helicobacter pylori bacteria, on human, but not bovine, milk fat globule membrane mucins. In addition, non-mucin-type O-linked fucosylated oligosaccharides were found (NeuAc-Gal-GlcNAc1-3Fuc-ol in bovine milk and Gal-GlcNAc1-3Fuc-ol in human milk). The O-linked fucose structure in human milk is the first to our knowledge to be found on high molecular mass mucin-type molecules.  相似文献   

17.
The rat monoclonal antibody GoH3 identifies a complex of glycoproteins Ic and IIa on human and mouse platelets. The GoH3 epitope is located on glycoprotein Ic. A novel glycoprotein complex is identified by GoH3 on the surface membranes of mouse mammary epithelial tumor cells. This antigen complex is composed of glycoprotein Ic noncovalently associated with a monomor or a disulfide-linked multimer of a high molecular weight glycoprotein (Ic-binding protein (IcBP]. Glycoprotein Ic is synthesized as a large precursor with asparagine N-linked high mannose oligosaccharides. Processing of this precursor involves a proteolytic cleavage of the large polypeptides into two smaller disulfide-linked polypeptide chains, Ic alpha (heavy) and Ic beta (light), and conversion of the majority of the high mannose oligosaccharides into complex-type glycans. Likewise, glycoprotein IcBP is initially glycosylated with high mannose asparagine N-linked oligosaccharides which are processed to complex units in the mature form. Association of glycoprotein Ic with IcBP occurs within the cell soon after their synthesis. The kinetics of labeling show non-coordinate processing consistent with the idea that the concentration of glycoprotein Ic limits complex formation and the subsequent processing of glycoprotein IcBP.  相似文献   

18.
Somatic mutations which impair complex-type N-linked oligosaccharide processing and chemical inhibitors of processing have been shown to reduce metastatic potential in several experimental tumor models. In this report, we demonstrate that glycosylation mutants of the metastatic MDAY-D2 tumor cell line with either truncated glycans lacking sialic acid and galactose or a mutant with less branched N-linked oligosaccharides grow more slowly in serum-free medium (SFM) than do MDAY-D2 cells. In medium containing fetal calf serum, growth rates of the cell lines were similar. A revertant of the former mutation showed a return to a more rapid growth rate in SFM. The N-linked processing inhibitor swainsonine also reduced cell growth rate in SFM but not in serum-containing medium. One of five randomly selected clones of the MDAY-D2 tumor cell line showed a slower growth rate in SFM and also showed decreased expression of branched N-linked oligosaccharides. These observations suggest that in MDAY-D2 cells, optimal factor-independent stimulation is dependent upon expression of branched complex-type N-linked oligosaccharides. The growth rate of MDAY-D2 cells in SFM was dependent on the initial seeding density of the cultures, and medium conditioned by the cells accelerated the growth of low-density cultures, suggesting that the cells respond to an autocrine factor. Culture supernatants conditioned by mutant and wild-type cells had similar levels of growth-stimulating activity. However, both mutants and swainsonine-treated cells were less responsive to this growth-stimulating activity. The growth rates of the MDAY-D2 tumor cell lines in vivo as subcutaneous tumors correlated with their relative growth rates in SFM in vitro. The results suggest that branched complex-type N-linked oligosaccharides commonly expressed in malignant cells are required for optimal autocrine-dependent growth in vitro and may be a significant factor in tumor progression in vivo.  相似文献   

19.
N-Glycans linked to the human secreted form of epidermal growth factor receptor were isolated from A431 cells after swainsonine treatment. Analysis of the oligosaccharides by (1)H NMR spectroscopy and mass spectrometry shows the presence of oligomannose- and (alpha2-3)-sialylated hybrid-type glycans. The major hybrid-type oligosaccharide chains are fucosylated at the Asn-bound GlcNAc residue. Smaller amounts of the hybrid-type structures are also fucosylated at peripheral GlcNAc residues, constituting the sialyl-Le(x) antigen. No complex-type glycans are found, suggesting the absence of alpha-mannosidase III. An assay for alpha-mannosidase III on the A431 cells in the absence and presence of 6 microM swainsonine shows that Man(5)GlcNAc(2) is not converted into Man(3)GlcNAc(2), thereby confirming that these cells do not contain alpha-mannosidase III activity.  相似文献   

20.
Glycoproteins have various biological functions including enzymatic activity, protein stability and others. Due to the presence of paucimannosidic N-linked glycans, recombinant proteins from an insect cell expression system may not be suitable for therapeutic use. Because baculovirus expression systems (BESs) are used to produce recombinant proteins, it is of interest to modify the endogenous N-glycosylation pathway in insects to mimic that of mammals. Using a soaking RNAi sensitive cell line, BmN4-SID1, has enabled us to suppress Bombyx mori FDL (BmFDL), an N-linked glycan-specific β-N-acetylglucosaminidase. Western blotting and MALDI-TOF MS demonstrated that the BmFDL depletion almost completely converted the paucimannosidic structures of the recombinant proteins produced by BES into a complex-type structure. This highly efficient, simple and low-cost method can be used for mass production of secretion proteins with complex-type N-linked glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号