首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

2.
The interactions of the 18.5-kDa isoform of myelin basic protein (MBP) with calmodulin (CaM) in vitro have been investigated using fluorescence microscopy and spectroscopy. Two forms of MBP were used: the natural bovine C1 charge isomer (bMBP/C1) and a hexahistidine-tagged recombinant murine product (rmMBP), with only minor differences in behaviour being observed. Fragments of each protein generated by digestion with cathepsin D (EC 3.4.23.5) were also evaluated. Using fluorescence microscopy, it was shown that MBP and CaM interacted in the presence of Ca2+ under a variety of conditions, including high urea and salt concentrations, indicating that the interaction was specific and not merely electrostatic in nature. Using cathepsin D digestion fragments of MBP, it was further shown that the carboxyl-terminal domain of MBP interacted with Ca(2+)-CaM, consistent with our theoretical prediction. Spectroscopy of the intrinsic fluorescence of the sole Trp residue of MBP showed that binding was cooperative in nature. The dissociation constants for formation of a 1:1 MBP-Ca(2+)-CaM complex were determined to be 2.1 +/- 0.1 and 2.0 +/- 0.2 microM for bMBP/C1 and rmMBP, respectively. Fluorescence spectroscopy using cathepsin D digestion fragments indicated also that the carboxyl-terminal region of each protein interacted with Ca(2+)-CaM, with dissociation constants of 1.8 +/- 0.2 and 2.8 +/- 0.9 microM for the bMBP/C1 and rmMBP fragments, respectively. These values show a roughly 1000-fold lower affinity of MBP for CaM than other CaM-binding peptides, such as myristoylated alanine-rich C-kinase substrate, that are involved in signal transduction.  相似文献   

3.
4.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

5.
A novel Ca2+-binding protein (EhCaBP2) was identified from the protozoan parasite Entamoeba histolytica. EhCaBP2 has 79% sequence identity with calcium-binding protein EhCaBP1. The 3D structure of EhCaBP2 was determined using multidimensional nuclear magnetic resonance spectroscopic techniques. The study reveals that the protein consists of two globular domains connected by a short flexible linker region of four residues. On comparison of the 3D structure and dynamics of EhCaBP2 with those of EhCaBP1, it is found that they vary significantly in their N-terminal domains and interdomain linker. Immunofluorescence localization experiments revealed that EhCaBP1 and EhCaBP2 may not carry out similar functions, as their cellular distribution patterns are not the same. The functional differences between the two isoforms are explained on the basis of results obtained from the structural studies. The structural variation in the interdomain linker region and the formation of functionally important hydrophobic clefts in different regions of EhCaBP1 and EhCaBP2 provide interesting insights into the differences in the functionality of these two isoforms. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. S. M. Mustafi and R. B. Mutalik equally contributed to this work.  相似文献   

6.
The effects of deimination (conversion of arginyl to citrullinyl residues) of myelin basic protein (MBP) on its binding to calmodulin (CaM) have been examined. Four species of MBP were investigated: unmodified recombinant murine MBP (rmMBP-Cit(0)), an engineered protein with six quasi-citrullinyl (i.e., glutaminyl) residues per molecule (rmMBP-qCit(6)), human component C1 (hMBP-Cit(0)), and human component C8 (hMBP-Cit(6)), both obtained from a patient with multiple sclerosis (MS). Both rmMBP-Cit(0) and hMBP-Cit(0) bound CaM in a Ca(2+)-dependent manner and primarily in a 1:1 stoichiometry, which was verified by dynamic light scattering. Circular dichroic spectroscopy was unable to detect any changes in secondary structure in MBP upon CaM-binding. Inherent Trp fluorescence spectroscopy and a single-site binding model were used to determine the dissociation constants: K(d) = 144 +/- 76 nM for rmMBP-Cit(0), and K(d) = 42 +/- 15 nM for hMBP-Cit(0). For rmMBP-qCit(6) and hMBP-Cit(6), the changes in fluorescence were suggestive of a two-site interaction, although the dissociation constants could not be accurately determined. These results can be explained by a local conformational change induced in MBP by deimination, exposing a second binding site with a weaker association with CaM, or by the existence of several conformers of deiminated MBP. Titration with the collisional quencher acrylamide, and steady-state and lifetime measurements of the fluorescence at 340 nm, showed both dynamic and static components to the quenching, and differences between the unmodified and deiminated proteins that were also consistent with a local conformational change due to deimination.  相似文献   

7.
Myelin basic protein has been isolated from bovine brain using the nonionic detergent n-octyl-polydisperse oligooxyethylene. The purified basic protein contains large amounts of heterogeneous lipids.  相似文献   

8.
A metalloprotease activity associated with myelin membrane preparations degrades myelin basic protein (MBP), generating a characteristic fragment designated peptide C (MBP 74-170). Using an immunoblotting assay, peptide C-generating activity was detected in mammalian, avian, reptilian, and amphibian brains. The activity was present in rat brain as early as postnatal day 1 and also in adult rat peripheral nerve. Immunohistochemistry with a monoclonal antibody to the purified enzyme revealed that the metalloprotease was present in oligodendrocytes of optic nerve, of both white and grey matter of spinal cord, and also in the cytoplasm of both myelinating and non-myelinating Schwann cells of peripheral nerve.Special issue dedicated to Dr. Alan N. Davison  相似文献   

9.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

10.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

11.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

12.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

13.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

14.
Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca2+ serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca2+ sensors and decoders functions to bring about these changes. The cellular concentrations of Ca2+, their subcellular localization, and the specific interaction affinities of Ca2+ decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.  相似文献   

15.
We report the NMR assignment of 18.5 kDa recombinant murine myelin basic protein (MBP) in 100 mM KCl as a prerequisite to structural analyses of its Ca2+-dependent interaction with calmodulin.  相似文献   

16.
The stoichiometry of palmitoyllysophosphatidylcholine/myelin basic protein (PLPC/MBP) complexes, the location of the protein in the lysolipid micelles, and the conformational changes occurring in the basic protein and peptides derived from it upon interaction with lysolecithin micelles were investigated by circular dichroic spectropolarimetry, ultracentrifugation, electron paramagnetic resonance (EPR) and 31P, 13C, and 1H nuclear magnetic resonance spectroscopy (NMR), and electron microscopy. Ultracentrifugation measurements indicated that well-defined complexes were formed by the association of one protein molecule with approximately 141 lysolipid molecules. Small-angle X-ray scattering data indicated that the PLPC/MBP complexes form particles with a radius of gyration of 3.8 nm. EPR spectral parameters of the spin labels 5–, and 16-doxylstearate incorporated into lysolecithin/basic protein aggregates, and 13C- and 1H-NMR relaxation times of PLPC indicated that the addition of the protein did not affect the environment and location of the labels and the organization of the lysolipid micelles. The data suggested that MBP lies primarily near the surface of the micelles, with segments penetrating beyond the interfacial region into the hydrophobic interior, but without any part of the protein being protected against rapid exchange of its amide groups with the aqueous environment. The basic protein acquired about 20% -helix when bound to lysolipid micelles. Circular dichroic spectra of sequential peptides derived by cleavage of the protein revealed the formation of -helical regions in the association with lysolecithin. Specific residues in myelin basic protein that participated in binding to the micelles were identified from magnetic resonance data on changes in the chemical shifts and intensities of assigned resonances, and line broadening of peaks by fatty acid spin-labels incorporated into the micelles. Correspondence to: G. L. Mendz  相似文献   

17.
Paramecium Na+ channels, which were Ca2+-calmodulin activated, were studied in the inside-out mode of patch clamp. After excision of the membrane patch, they were active in the presence of 10–5 to 10–3 m Ca2+ in the bath. They became much less active in the presence of 10–6 m Ca2+, and their activity subsided completely at 10–8 m Ca2+. A Hill plot showed a dissociation constant of 6 m for Ca2+ binding. This dissociation constant shifted to a submicromolar range in the presence of 1 mm Mg2+. The channels also exhibited a mild voltage dependence. When exposed to 10–8 m Ca2+ for an extended period of 2–4 min, channels were further inactivated even after bath Ca2+ was restored to 10–4 m. Whereas neither high voltage (+100 mV) nor high Ca2+ (10–3 m) was effective in reactivation of the inactive channels, addition of Paramecium wild-type calmodulin together with high Ca2+ to the bath restored channel activity without a requirement of additional Mg2+ and metabolites such as ATP. The channels reactivated by calmodulin had the same ion conductance, ion selectivity and Ca2+ sensitivity as those prior to inactivation. These inactivation and reactivation of the channels could be repeated, indicating that the direct calmodulin effect on the Na+ channel was reversible. Thus, calmodulin is a physiological factor critically required for Na+ channel activation, and is the Ca2+ sensor of the Na+-channel gating machinery.We thank C. Kung for his kind support, and A. Boileau for critical reading. Supported by grants from National Institutes of Health GM 22714-20 and 36386-09.  相似文献   

18.
K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from neighbouring glial cells. Previous studies have focused on modulation of Ca2+ entry pathways that initiate signalling. Here we have investigated purinergic regulation of NCKX4, a powerful extrusion pathway that assists in terminating Ca2+ signals. NCKX4 activity was stimulated by ATP through activation of the P2Y receptor signalling pathway. Stimulation required dual activation of PKC (protein kinase C) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). Mutating T312, a putative PKC phosphorylation site on NCKX4, partially prevented purinergic stimulation. These data illustrate how purinergic regulation can shape the dynamics of Ca2+ signalling by activating a signal damping and termination pathway.  相似文献   

19.
Ca2+ transport in kidney has gained considerable attention in the recent past. Our laboratory has been involved in understanding the regulatory mechanisms underlying Ca2+ transport in the kidney across the renal basolateral membrane. We have shown that ANP, a cardiac hormone, mediates its biological functions by acting on its receptors in the kidney basolateral membrane. Furthermore, it has been established that ANP receptors are coupled with Ca2+ ATPase, the enzyme that participates in the vectorial translocation of Ca2+ from the tubular lumen to the plasma. It is possible that a defect in the ANP-receptor-effector system in diabetes (under certain conditions such as hypertension) may be associated with abnormal Ca2+ homeostasis and the development of nephropathy. Accordingly, future studies are needed to establish this hypothesis.  相似文献   

20.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号