首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria isolated from the gill tissues of the fishSarothredon mossambica were analysed for their macromolecular content, following transfer from freshwater to media of higher salinity. The results suggest a breakdown of mitochondria during the initial phases of the stress and a regeneration during continued exposure. Also all the synthetic machineries, in general, seem to be triggered in gill tissue during continuous exposure to hyperosmotic media.  相似文献   

2.
Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na+ sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed.  相似文献   

3.
The physiological ability to adapt for various environmental changes is known as acclimation. When exposed to sublethal level of stress, plants develop the ability to withstand severe stress, as acquired tolerance. The present study was conducted to explicate the physiological basis of acquired tolerance in rice. Rice seedlings (variety IR 20) were grown in half strength Hoagland solution, and after 22nd day, they were kept in half strength Hoagland solution containing 50 mM NaCl (sublethal dose) for 7 days followed by half strength Hoagland solution containing 100 mM NaCl (lethal dose) for another 7 days. The non-pretreated 29 days old rice seedlings maintained in half strength Hoagland solution were directly transferred to half strength Hoagland solution containing 100 mM NaCl (lethal dose) solution for 7 days. The control plants were maintained in half strength Hoagland solution without NaCl. Various morphological and physiological parameters were recorded on 29th and 36th days old seedlings from control, pretreated and non-pretreated plants. The results revealed significant reduction in growth parameters (shoot length, root length, leaf area and total dry matter production) of non-pretreated plants below that of pretreated plants. The pretreated plants showed increased values to the extreme of 19.8 per cent in leaf water potential (ψw), 9 per cent in relative water content (RWC), 26 per cent in photosynthetic rate (P N), 28 per cent in leaf stomatal conductance, and 47 per cent in chlorophyll a over non-pretreated plants. The same trend was also observed in chlorophyll a/b ratio (6.6%) and F v/F m ratio (19.3%). However, a reverse trend was seen in F o value. The pretreated plants showed improved ionic regulation as evident from low Na+, Cl and high K+ contents, which is attributed to enhanced plant water status and photosynthesis. Both pretreated and non-pretreated plants had higher contents of osmolytes viz., sucrose, leaf soluble sugars and proline contents than control plants. However, starch content revealed an inverse trend. Therefore, the present study reveals that rice can acclimate to lethal dose of salinity stress by pretreatment with sublethal dose of NaCl. Section Editor: J. M. Cheeseman  相似文献   

4.
Changes in salinity are known to alter the morphology of protists, and we hypothesized that these changes subsequently alter also the predatory behavior of the dinoflagellate Oxyrrhis marina. Oxyrrhis was grown in media of 33, 25, 20, and 10% of the regular salinity of f/2 medium (31–32‰). In all cases, the cells discharged trichocysts and swelled. Cell surfaces and volumes increased with decreasing salinity, such that cell surface area at least doubled at 10% and the cell volume increased approximately fourfold. After 1 h, the cells started to regain their regular shape, which was almost completed after 24 h. Oxyrrhis immediately regained its regular shape when culture medium was added 5–10 min after the osmotic stress. When incubated with Pyramimonas grossii as prey, those short-term stressed cells showed no significant different prey uptake in comparison to non-stressed cells. In contrast, 24 h after the addition of prey, short-term stressed Oxyrrhis cells had, with weak statistical significance, more Pyramimonas cells engulfed than non-stressed cells. These results indicated that (1) trichocysts were most likely not involved in prey capture and (2) salinity-stressed Oxyrrhis either enhanced its capability to capture more prey, or its digestion apparatus was hampered.  相似文献   

5.
Previous studies showed that exposure of eight-day-old Sorghum bicolor for three weeks to sublethal salinity induces an increase in salinity tolerance, called physiological adaptation (A). During A, plants of a same population differ in reaction and tolerance to salinity. Tolerance levels of the reaction types depend on environmental conditions besides salinity. Reactions observed most frequently in an experiment have generally highest tolerance levels. This phenomenon is defined adaptive determinism (AD). In this study, the relationship between a potential source of the information subjacent to AD and AD itself is analysed in plants first exposed to salt-inducing A. When the reaction types are close variations of one reaction mode, AD is highest. This relationship is inversed in progeny of adapted plants. Results suggest that information relevant to AD is transmitted to the progeny of adapted plants, and that adaptive information is created during A in plants first exposed to adaptation inducing treatment.  相似文献   

6.
Seven plant species including three chenopods:Suaeda fruticosa, Kochia indica, Atriplex crassifolia and four grasses:Sporobolus arabicus, Cynodon dactylon, Polypogon monspeliensis, Desmostachya bipinnata, varied greatly in their seed germination and growth responses to soil moisture or salinity. The germination percentage of each species was significantly lower at soil moisture level of 25 % of water holding capacity than at the levels ranging from 50 to 125 %. Increase in salinity resulted in gradual decrease in seed germination of each species. Growth responses of species to salinity varied widely from significant decrease with slight salinity to stimulation up to salinity levels of 20 dS m-2. Higher K+Na+ratios in plant shoots of all species compared to that in the root medium indicated selective K+uptake. Higher tolerance in chenopod species seems to be attendant on their ability for internal ion regulation. We are thankful to Mr. Noor Ahmad for his assistance in experimental work.  相似文献   

7.
We studied the key environmental variables shaping plant assemblages in Mediterranean abandoned ricefields with contrasting freshwater inputs over saline sediments. Plant species cover, water levels and soil variables were studied following a stratified random sampling design. Multivariate analysis identified water regime, particularly summer and autumn irrigation, as the most important environmental variable associated with vegetation composition. Distribution of annual and emergent macrophytes was not associated to salinity as found at the study site (0.57–4.1 mS/cm). Increased soil salinity, caused by summer irrigation near the soil surface did affect shallow-marsh assemblage distribution. These key environmental characteristics allowed us to identify six main assemblages. Annual macrophytes (such as Zannichellia palustris) were defined by high (over 10 cm) annual mean water level (MWL) and early successional conditions; emergent macrophytes (such as Typha spp., Scirpus lacustris) by annual MWL of 10 to − 25 cm and continuous shallow flooding in summer and autumn (MWL of 0–10 cm). The shallow-marsh group, correlated with annual MWL − 25 to − 100 cm, separated into two subgroups by salinity: grassland (including Paspalum distichum) with summer and autumn MWL below − 25 cm and brackish (with Juncus subulatus or Agrostis stolonifera) with summer and autumn MWL just below the soil surface (0 to − 25 cm). Water levels for the grassland subgroup may equate with a salinity ‘refuge’ for P. distichum. Time was a further determinant of variation in the full data set. Abundance of a large group of agricultural annuals (such as Sonchus tenerrimus) and damp ground annuals (including ricefield weeds such as Ammania robusta) decreased with time as bare ground disappeared. Maintenance of spatial vegetation heterogeneity in abandoned ricefields is contingent on continued water regime management.  相似文献   

8.
Although glutamine is used as a major substrate for the growth of mammalian cells in culture, it suffers from some disadvantages. Glutamine is deaminated through storage or by cellular metabolism, leading to the formation of ammonia which can result in growth inhibition. Non-ammoniagenic alternatives to glutamine have been investigated in an attempt to develop strategies for obtaining improved cell yields for ammonia sensitive cell lines.Glutamate is a suitable substitute for glutamine in some culture systems. A period of adaptation to glutamate is required during which the activity of glutamine synthetase and the rate of transport of glutamate both increase. The cell yield increases when the ammonia accumulation is decreased following culture supplementation with glutamate rather than glutamine. However some cell lines fail to adapt to growth in glutamate and this may be due to a low efficiency transport system.The glutamine-based dipeptides, ala-gln and gly-gln can substitute for glutamine in cultures of antibody-secreting hybridomas. The accumulation of ammonia in these cultures is less and cell yields in dipeptide-based media may be improved compared to glutamine-based controls. In murine hybridomas, a higher concentration of gly-gln is required to obtain comparable cell growth to ala-gln or gln-based cultures. This is attributed to a requirement for dipeptide hydrolysis catalyzed by an enzyme with higher affinity for ala-gln than gly-gln.  相似文献   

9.
The time-course of programmed cell death (apoptosis) during reorganization of gill epithelium in salinity-stressed tilapia was analyzed using a recently developed method based on laser scanning cytometry (LSC) of dissociated gill cells. Apoptosis in mitochondria-rich cells (MRC) was distinguished from that in other cell types using Na+/K+ ATPase (NKA) as a cell-specific marker. Caspase 3/7 activity in MRC, assessed using LSC and microplate assays, increased significantly starting at 6 h of salinity stress and remained elevated for at least 5 days. This time-course of apoptosis in MRC during acute salinity stress was reflected in elevated apoptotic DNA fragmentation. In parallel to induction of apoptosis, MRC showed a pronounced shift to G2 phase of the cell cycle, which is indicative of G2/M cell cycle arrest, and an increase in NKA abundance per MRC. Unlike in MRC, apoptosis was not significantly increased in other gill cell types, although there was a small transient increase in DNA fragmentation at 6 h. G2 arrest was also observed. Overall, we interpret our data as evidence for a significant role of apoptosis in the extensive reorganization of MRC populations that takes place during salinity acclimation, perhaps similar to its well-established role during organismal development.  相似文献   

10.
Photoautotrophic tobacco (Nicotiana tabacum var. Wisconsin 38) cell cultures were gradually adapted to grow in media containing the normally inhibitory concentration of 20 g l–1 NaCl. Both salt-adapted cultures maintained in 20 g l–1 NaCl (P20) and salt-unadapted (P0) cultures demonstrated similar chloroplast morphology and similar growth characteristics on a dry weight basis, but P20 cells showed reduced growth on a fresh weight basis compared to P0 cells. Compared to P0 cells, intracellular sucrose levels were significantly higher in P20 cells while starch levels in P0 cells were significantly higher than in P20 cells. Levels of intracellular and extracellular reducing sugars, and chlorophyll accumulated to the same degree in P20 and P0 cells, but accumulation was delayed by approximately 13 days in P20 cells. O2 evolution and14[CO2] fixation was more resistant to inhibition by NaCl in P20 cells than in P0 cells. However, significant changes in the abundance of thylakoid membrane proteins could not be demonstrated between P20 and P0 cells although higher levels of Rubisco on a per milligram chlorophyll basis were observed in P0 compared to P20 chloroplasts.Abbreviations DW Dry weight - FW Fresh weight  相似文献   

11.
12.
With the expansion of immobilised plant cell technology the need has arisen for a suitable vessel in which systems can be efficiently manipulated.Described is a vessel which incorporates many of the features of a fluidised bed, together with some of those from airlift technology to enable immobilised plant cells to be cultured at high biomass concentrations while maintaining a high mass transfer and controlled aeration under continuous flow conditions. In the case described, the vessel has been used for the continuous production of fine plant cell suspensions, although it is easily adaptable for use in cell mediated biotransformation or de novo synthesis studies.Abbreviations 2,4D 2.4 dichlorophenoxyacetic acid  相似文献   

13.
植物细胞培养技术提高次生代谢物产量的方法(综述)   总被引:4,自引:0,他引:4  
介绍植物细胞培养技术提高次生代谢物产量的方法。  相似文献   

14.
植物叶片水分利用效率研究综述   总被引:35,自引:7,他引:35  
植物能否适应当地的极限环境条件,最主要的看它们能否很好地协调碳同化和水分耗散之间的关系,即植物水分利用效率(WUE)是其生存的关键因子.就近来研究最多的叶片水平上的WUE,从叶片WUE的定义,方法,进展等方面对其进行总结概括,并就今后植物叶片水分利用效率的研究提出了几点看法:方法上,叶片碳同位素方法是目前植物叶片长期水分利用效率研究的最佳方法,而δ13C的替代指标将继续是方法研究中的一个方向,前景乐观;研究内容上,要加强极端干旱区河岸林木的δ13C和WUE的研究;结合植物生理生态学,生物学和稳定同位素技术,探究植物叶片长期水分利用效率的机理,特别是要加强运用双重同位素模型加深和理解植物叶片长期水分利用效率变化规律和内在机制的研究;要结合多种方法,加强多时空尺度植物叶片WUE及其之间的转换研究.  相似文献   

15.
烟草耐盐愈伤组织变异体对盐渍的适应性   总被引:1,自引:0,他引:1  
用组织培养及逐步增加,NaCl浓度的方法,筛选出烟草耐盐愈伤组织变异体。能耐盐(2% NaCl)的愈伤组织在2% NaCl中继代29次,再移入无盐培养基中培养11和20代后不能保持提高的耐盐性,分别退化到只耐1.5%与1.0% NaCl的水平。耐2% NaCl愈伤组织产生的再生植株自交后代,其萌发种子、幼苗及成长植株均未能表现出耐盐性,说明用选择胁迫方法所筛选出的耐盐细胞系,其耐盐性的提高属于生理适应性。  相似文献   

16.
流行性乙型脑炎病毒在Vero细胞上传代适应的研究   总被引:1,自引:0,他引:1  
通过乙脑病毒P_3株以不同方式在鼠脑和Vcro细胞间传代适应的研究,培育出适于工业化大生产制备乙脑疫苗的生产毒种。其毒力可达7.0±0.5lgLD50/0.04ml,空斑滴度为7.5±0.5PFU/ml,免疫原性ID50值为0.000016-0.000023ml;在含有适量人白蛋白的199营养液内,该毒种于-30℃至少可稳定一年;与鼠脑组织毒种相比,传代细胞毒种的毒力、免疫原性及稳定性均与其相当。然而,后者不含脑组织,至少降低了一种过敏的危险。另外,细胞毒种的制备无需手工解剖鼠脑,易于控制外源因子污染,易于标准化。对于大规模生产疫苗、提高疫苗产量和质量,传代细胞毒种比鼠脑组织悬液毒种具有明显的优点。  相似文献   

17.
18.
Plants were regenerated from both the wild type and a stable NaCI-tolerant line of tobacco cells ( Nicotiana tabacum/gossii ). The regeneration process was much more difficult in the case of the NaCI-tolerant line and was only successful in the absence of NaCI. These plants differed morphologically from those regenerated from the wild type cell line, exhibiting abnormally short internodes, small leaves and reduced growth. Cell suspension cultures derived from plants regenerated from the stable NaCI-tolerant line retained a high level of tolerance to salt. The NaCI-concentration required to reduce fresh and dry weight gain by 50% was about twice that observed in the case of the cells obtained from wild type plants.
The results presented here, together with those of Watad et al. (1985), indicate that resistance to salt is operating and stable at the cellular level before and after plant regeneration. When the regenerated plants were grown in increasing levels of salt their growth response was not clearly different from that of the plants regenerated from the wild type cell line. However, the survival of plants on high concentrations of NaCI tended to be higher in the case of plants regenerated from the NaCI-tolerant cell line.  相似文献   

19.
A novel microsurgery technique for the partial removal of rigid cell-walls in intact plant tissue is established. Using a size-variable slit, an ArF excimer laser was microprojected on the surface of the targeted cell, and this method enabled the area- and depth-controllable processing of the cortical structure of plant cells including the cuticle and cell wall layer. In epidermal cells of all tested plants, viabilities of more than 90% were retained 24 h after irradiation. Scanning electron microscope (SEM) observation revealed that the cuticle layer of the irradiated region was completely ablated, and the cellulose microfibrils of the secondary cell wall were partially removed; furthermore, 4 days after laser treatment, the regeneration of cell wall fibrils was observed. As a model experiment, the transient expression of synthetic green fluorescent protein (sGFP) was performed by the microinjection of cauliflower mosaic virus (CMV) 35S promoter-derived sGFP gene through an "aperture" in the treated cell surface. Moreover, micron-sized fluorescent beads were successfully introduced by the same method into the onion cells indicating that this method can be used to introduce foreign materials as large as organelles.  相似文献   

20.
Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号