首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60°C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% β-cyclodextrin (CD) and 10% γ-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of β-CD.  相似文献   

2.
New secretion vectors containing synthetic signal peptides were constructed to study the periplasmic translocation of green fluorescent protein (GFP) in Escherichia coli. These constructs encode synthetic signal peptides spA and spD fused to the amino terminal end of GFP, and expressed from T7/lac promoter in the BL21DE3 strain by induction with IPTG. The recombinant protein was detected in both the cytoplasmic and periplasmic fractions. Fluorescence analysis revealed that recombinant proteins with signal peptides were not fluorescent, indicating translocation to periplasmic space. In contrast, recombinant proteins without signal peptide were fluorescent. These results indicate that the expressed recombinant proteins were translocated into the periplasm. Therefore, the synthetic signal peptides derived from signal peptides of Bacillus sp. could efficiently secrete the heterologous proteins to the periplasmic space of E. coli.  相似文献   

3.
l-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS–PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.  相似文献   

4.
5.
A truncated Bacillus sp. TS-23 α-amylase gene lacking 96 and 294 bp at its 5′ and 3′ end respectively was prepared by polymerase chain reaction and cloned into Escherichia coli expression vector, pQE-30, under the control of T5 promoter. SDS-PAGE and activity staining analyses showed that the His6-tagged amylase had a molecular mass of approximately 54 kDa. Isopropyl-β-d-thiogalactopyranoside (IPTG) induction of E. coli M15 cells bearing the recombinant plasmid resulted in the extracellular production of active amylase. Western blot analysis also revealed that the truncated amylase was present in the periplasmic space and culture medium. Received: 23 December 2000/Accepted: 26 January 2001  相似文献   

6.
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665 kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54 kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Δ5) of expected size of about 60 kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Δ5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50°C and 40°C, respectively for Chi255 and Chi255Δ5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.  相似文献   

7.
A DNA fragment corresponding to carboxymethylcellulase activity of Acetobacter xylinum IFO 3288 was isolated and cloned in Escherichia coli, and the DNA sequence was determined. The DNA fragment sequenced had an open-reading frame of 654 base pairs that encoded a protein of 218 amino acid residues with a deduced molecular mass of 23,996 Da. The protein encoded in the DNA fragment expressed in E. coli hydrolyzed a carboxymethylcellulose. This gene was subcloned into the shuttle vector [pZA22; Misawa et al. (1986) Agric Biol Chem 50:3201–3203] between Zymomonas mobilis and E. coli. The recombinant plasmid pZAAC21 was introduced into Z. mobilis IFO 13756 by electroporation. The carboxymethylcellulase gene was efficiently expressed in both bacteria, although the level of expression in Z. mobilis was ten times greater than that in E. coli. Approximately 75% of the total carboxymethylcellulase activity detected in Z. mobilis was located in the periplasmic space (outside of the cytoplasmic space). Enzyme activity was not detected in the periplasmic space, but in the cytoplasm of E. coli.  相似文献   

8.
Hen egg white lysozyme was expressed as a protein fusion with the OmpA signal sequence and an octapeptide linker in Escherichia coli. The expression yielded soluble and enzymatically active lysozyme. Lysozyme activity was detected in the periplasmic space, in the cytosol and in the insoluble cytosolic fraction of E. coli. The results indicate that the environmental conditions in both the cytosol and the periplasmic space of E. coli were sufficient for correct protein folding and disulphide bond formation of eukaryotic recombinant lysozyme. However, the expression of active enzyme in E. coli consequently led to bacterial cell lysis due to hydrolysis of the peptidoglucan. Correspondence to: B. Fischer  相似文献   

9.
 Several alkalophilic Bacillus spp. strains were selected for their capacity to produce alkaline cellulases. Culture supernatants of these strains showed optimal cellulase activities between pH 8 and 9 and they were stable from pH 6 to pH 12. A cellulase gene (celB1) from the alkalophilic Bacillus sp. strain N186-1 was cloned in Escherichia coli using polymerase chain reaction techniques. The cloned gene was present in a 2.539-bp HindIII fragment and its nucleotide sequence was determined. The coding sequence showed an open-reading frame encoding 389 amino acids. The amino acid sequence, deduced from the nucleotide sequence, permitted us to include it in family 5 (or A) of the glycosyl hydrolases. The complete open-reading frame of celB1 was cloned in the plasmid pET-11d and expressed in E. coli BL21 (DE3), in which a protein of 39 kDa was obtained in the cytoplasm; however, no endoglucanase activity was detected. A second construction in pET-12a allowed the production of a 39-kDa protein located in the periplasmic space of E. coli that had endoglucanase activity. The protein produced has optimal activity at pH 7 and 50°C and it retains more than 70% of its activity after incubation for 1 h at pH 12. Received: 27 December 1995/Received revision: 14 March 1996/Accepted: 25 March 1996  相似文献   

10.
The gene for the Cu,Zn superoxide dismutase (Cu,ZnSOD) from Saccharomyces cerevisiae was cloned and expressed in Escherichia coli LMG194. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the E. coli periplasmic expression vector pBAD/gIIIA, yielding pBAD-1. E. coli was transformed using the constructed plasmid pBAD-1 and induced by adding 0.02% l-arabinose to express Cu,ZnSOD protein. The results indicated that Cu,ZnSOD enzyme activity in the periplasmic space was about fivefold to sixfold higher in the recombinant E. coli strains bearing the sod gene than in the control strains. The yields of Cu,ZnSOD were about threefold higher at 48 h than at 24 h in the recombinant E. coli cells. Significantly higher survival of strains was obtained in cells bearing the sod gene than in the control cells when the cells were treated by heat shock and superoxide-generating agents, such as paraquat and menadione.  相似文献   

11.
The gene coding for ferric enterobactin binding protein from E. coli O157:H7 was amplifi ed. This gene was cloned and expressed as C-terminal His (6)-tagged protein. The SDS-PAGE analysis of the total protein revealed only two distinct bands, with molecular masses of 31kDa and 34kDa. The Ni-NTA chromatography purifi ed FepB and the osmotically shocked periplasmic fraction of IPTG induced cells showed only a single band of 31 kDa. Polyclonal mouse antibody was raised against the recombinant protein during 4 weeks after immunization. Western blot analysis of the recombinant FepB with mouse antiserum revealeda single band of 31 kDa. Identification and purification of FepB helped reveal its appropriate molecular mass. Polyclonal antibody raised against the recombinant protein reacted with bacterial FepB. The recombinant protein FepB could have a protective effect against E. coli O157:H7 and might be useful as an effective vaccine.  相似文献   

12.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

13.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

14.
In order to further study the B subunit of the Escherichia coli heat-labile enterotoxin (LTB), we obtained the LTB gene from pathogenic E. coli, cloned it into the pET22b (+) prokaryotic expression vector, and expressed it as a fusion protein with His tag in E. coli BL21 (DE3). The recombinant LTB was expressed and purified by Ni2+ affinity chromatography. The biological activity of the purified recombinant LTB was assayed in a series of monosialotetrahexosylganglioside (GM1)-ELISA experiments. The recombinant LTB (rLTB) was efficiently expressed under the induction of 10 g/l lactose at 37°C for 6 h and yielded up to 31% of the total bacterial protein. Fused with pelB signal peptide, rLTB was successfully localized to the periplasmic space. GM1-ELISA experiments showed that the rLTB obtained retains strong GM1 ganglioside-binding activity. The ELISA result of hantavirus nucleoprotein-specific secretory immunoglobulin A (sIgA) and IgG showed that intranasal administration of inactivated hantavirus with rLTB significantly increased the levels of hantavirus-specific sIgA (< 0.01) and IgG (< 0.01) in comparison with inactivated hatavirus alone. In summary, we have developed a method for the efficient secretory expression and purification of rLTB, and the inactivated hantavirus co-administered intranasally with rLTB could effectively induce both mucosal and humoral immune responses specific to hantavirus. Shouchun Cao and Ying Zhang contributed equally to this work.  相似文献   

15.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

16.
Summary A 1.5 kb plasmid-encoded lysostaphin gene fragment of Staphylococcus staphylolyticus was amplified by polymerase chain reaction (PCR) and cloned in Escherichia coli by using plasmid pET29b(+) as an expression vector. By optimizing culture conditions, the activities of lysostaphin were expressed as 66 %, 30 %, and 4 % in extracellular, intracellular, and periplasmic fractions of recombinant E. coli, respectively. The enzyme was purified to homogeneity by using a simple one-step fractionation on bacterial cells of lysostaphin-resistant Staphylococcus aureus mutant. The recombinant enzyme had an Mr of approximate 27 kDa, and its bacteriolytic activity was indistinguishable to the authentic lysostaphin purified from Staphylococcus staphylolyticus.  相似文献   

17.
The gene (dex), which encodes the Streptococcus mutans dextranase (Dex), was cloned in Escherichia coli. The E. coli host harboring a recombinant plasmid (pSD2) containing an 8-kb BamHI insert produced a Dex protein of 133 kDa as well as smaller enzymes of 118, 104, and 88 kDa. The Dex produced by the recombinant E. coli was apparently located in the cytoplasmic fraction, not in the periplasmic nor the extracellular fractions. Subcloning and deletion analysis of pSD2 showed that the structural gene of Dex was encoded by a 4-kb BamHI-SalI fragment. The fragment also contained the dex promoter which was effective in the E. coli cell.  相似文献   

18.
Summary The recombinant plasmid, pPFC4, which carriesPseudomonas fluorescens subsp.cellulosa chromosomal DNA was previously isolated on the basis of its ability to direct the expression of endoglucanase inEscherichia coli. In the present study, some physical and chemical properties of this activity were characterized. The major portion (78.4%) of the endoglucanase activity is found in the periplasmic space ofE. coli. This plasmid-encoded endoglucanase has a pH optimum of approximately 6.0 and a temperature optimum of approximately 50°C. With carboxymethylcellulose-zymograms, after polyacrylamide gel electrophoresis, periplasmic extracts fromE. coli carrying pPFC4 show six distinct bands with endoglucanase activity. The molecular mass of the major endoglucanase band is approximately 29 kDa while the remaining bands with endoglucanase activity range from 48 to 100 kDa. Although the basis of this heterogeneity is not known, the DNA insert of pPFC4 that encodes endoglucanase activity is not large enough to contain six separate genes; hence, the observed array of endoglucanases may result from post-translational modification of one or two primary gene products.  相似文献   

19.
外源基因在大肠杆菌中表达的研究进展   总被引:16,自引:0,他引:16  
大肠杆菌是外源基因表达的首选体系.大肠杆菌中外源蛋白可定位于胞内、周质或胞外培养基中.按照重组蛋白的可能命运,综述了最近几年大肠杆菌表达体系的研究进展.  相似文献   

20.

Background  

The overexpression of scFv antibody fragments in the periplasmic space of Escherichia coli frequently results in extensive protein misfolding and loss of cell viability. Although protein folding factors such as Skp and FkpA are often exploited to restore the solubility and functionality of recombinant protein products, their exact impact on cellular metabolism during periplasmic antibody fragment expression is not clearly understood. In this study, we expressed the scFvD1.3 antibody fragment in E. coli BL21 and evaluated the overall physiological and global gene expression changes upon Skp or FkpA co-expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号