首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

2.
The influence of Pratylenchus penetrans on the incidence and severity of Verticillium wilt was examined in the potato cultivars ''Kennebec'', ''Katahdin'', and ''Abnaki''. Single-stem plants were grown in soil maintained at a temperature of 22 ± 1 C. Axenically cultured nematodes were suspended in water and introduced to the soil, at a rate of ca 5,000/25.4-cm pot, through holes made around each stem. Ten days after infestation with nematodes, conidial suspensions of Verticillium albo-atrum were introduced into the soil at a rate of ca 1,000,000/pot. Among Katahdin plants, the severity of foliar symptoms was increased in the presence of both pathogens 2 and 3 weeks after soil intestation. During the remaining 5 weeks, severity of foliar symptoms was not different between plants infected by both pathogens and those infected by Verticillium alone. Within the wilt-susceptible cultivar Kennebec and the resistant eultivar Abnaki, no effects on foliar symptom severity were observed. When plant heights, shoot weights, and tuber yields were analyzed, a Pratylenchus-Verticillium interaction was not evident within any of the cultivars tested. Nematode populations in roots and rhizosphere were suppressed in Kennebec and Katahdin plants in the presence of Verticillium.  相似文献   

3.
Meloidogyne incognita, Hoplolaintus galeatus, and North Carolina and Georgia populations of Belonolaimus longicaudatus were introduced singly and in various combinations with Fusarium oxysporum f. sp. vasinfectum on wilt-susceptible ''Rowden'' cotton. Of all the nematodes, the combination of the N. C. population of B. longicaudatus with Fusarium promoted greatest wilt development. H. galeatus had no effect on wilt. With Fusarium plus M. incognito or B. longicaudatus, high nematode levels promoted greater wilt than low levels. The combination of either population of B. longicaudatus with M. incognita and Fusarium induced greater wilt development than comparable inoculum densities of either nematode alone or where H. galeatus was substituted for either of these nematodes. Nematode reproduction was inversely related to wilt development. Without Fusarium, however, the high inoculum level resulted in greater reproduction of all nematode species on cotton. Combining M. incognita with B. longicaudatus or H. galeatus gave mutually depressive effects on final nematode populations. The interactions of H. gateatus with B. longicaudatus varied with two populations of the latter.  相似文献   

4.
The effect of temperature on the reaction of susceptible (Canario Divex) and resistant (A 211) bean pure lines to Meloidogyne incognita was studied with soil temperature tanks housed in a growth chamber at 22 or 24 C. Soil temperature remained constant at 16, 22, 24, 26, 30, or 32 C in several trials. Bean line A 211 was resistant at 16 and 22 C but was susceptible at 24 C and above. Resistance to root-knot nematode reproduction was affected by a lower temperature (24 C) than was resistance to root galling (26 C) in A 211. Incubation of A 211 at 30 C for 3 and 16 days after inoculation with M. incognita resulted in a significant increase in nematode reproduction and root galling, respectively. The resistant reactions of A 211 to nematode reproduction and root galling were retained when inoculated plants were incubated at 21 C for a minimum of 16 and 23 days, respectively, prior to high temperature treatment.  相似文献   

5.
In vitro pathogenicity tests demonstrated that Hirschmanniella caudacrena is pathogenic to Ceratophyllum demersum (coontail). Symptoms were chlorotic tissue, deformed stems, and, finally, death of the plant. Inoculum densities of 500 nematodes per 5-cm-long cutting in a test tube containing 50 ml of water resulted in death and decay of some of the cuttings within 8 weeks; 100 nematodes killed the plants in 12 weeks, and 50 and 25 nematodes killed them in 16 weeks. The lowest inoculum level of 10 nematodes did not seriously affect the plants at 16 weeks when the experiment was terminated. A second test conducted outdoors in glass jars containing 3 liters of water and two cuttings weighing a total of 15 g fresh weight showed damage, but results were not statistically significant. Hydrilla verticillata inoculated with H. caudacrena was not affected seriously.  相似文献   

6.
The occurrence ofchlamydospores of Glomus fasciculatum (Gf) within cysts of the soybean cyst nematode, Heterodera glycines, and the effects of vesicular-arbuscular mycorrhizae on nematode population dynamics and soybean (Glycine max) plant growth were investigated. Chlamydospores occupied 1-24% of cysts recovered from field soil samples. Hyphae of Missouri isolate Gfl penetrated the female nematode cuticle shortly after she ruptured the root epidermis. Convoluted hyphae filled infected eggs, and sporogenesis occurred within infected eggs. G. microcarpum, G. mosseae, and two isolates of Gf were inoculated with H. glycines on plants of ''Essex'' soybeans. Each of the two Gf isolates infected about 1% of the nematode eggs in experimental pot cuhures. The Gfl isolate decreased the number of first-generation adult females 26%, compared with the nonmycorrhizal control. The total numbers of first-generation plus second-generation adult females were similar for both Gf isolates and 29-41% greater than the nonmycorrhizal control. Soybean plants with Gf and H. glycines produced more biomass than did nonmycorrhizal plants with nematodes, but only Gfl delayed leaf senescence.  相似文献   

7.
Microorganisms produce volatile organic compounds (VOCs) which mediate interactions with other organisms and may be the basis for the development of new methods to control plant-parasitic nematodes that damage coffee plants. In the present work, 35 fungal isolates were isolated from coffee plant rhizosphere, Meloidogyne exigua eggs and egg masses. Most of the fungal isolates belonged to the genus Fusarium and presented in vitro antagonism classified as mutual exclusion and parasitism against the nematode-predator fungus Arthrobotrys conoides (isolated from coffee roots). These results and the stronger activity of VOCs against this fungus by 12 endophytic bacteria may account for the failure of A. conoides to reduce plant-parasitic nematodes in coffee fields. VOCs from 13 fungal isolates caused more than 40% immobility to Meloidogyne incognita second stage juveniles (J2), and those of three isolates (two Fusarium oxysporum isolates and an F. solani isolate) also led to 88-96% J2 mortality. M. incognita J2 infectivity decreased as a function of increased exposure time to F. oxysporum isolate 21 VOCs. Gas chromatography-mass spectrometry (GC-MS) analysis lead to the detection of 38 VOCs produced by F. oxysporum is. 21 culture. Only five were present in amounts above 1% of the total: dioctyl disulfide (it may also be 2-propyldecan-1-ol or 1-(2-hydroxyethoxy) tridecane); caryophyllene; 4-methyl-2,6-di-tert-butylphenol; and acoradiene. One of them was not identified. Volatiles toxic to nematodes make a difference among interacting microorganisms in coffee rhizosphere defining an additional attribute of a biocontrol agent against plant-parasitic nematodes.  相似文献   

8.
Information on the effect of bacteria-feeding nematodes on bacterial populations in the soil is sparse. We have isolated, cultured, and microscopically examined bacteria and nematodes coexisting within an agricultural soil and have studied their feeding relationship. The bacterium Pseudomonas corrugata isolate 2140R is a biocontrol agent against the pathogenic fungus Gaeumannomyces graminis var. tritici. The nematode Acrobeloides nanus is a cosmopolitan, bacteria-feeding organism widespread in agricultural and arid soils throughout Australia. Using light and electron microscopy, we observed the ingestion and breakdown of P. corrugata in the pharynx of A. nanus and bacterial passage through the nematode intestine as well as the accumulation of fluorescent compounds from ingested and broken P. fluorescens in the lumen of the nematode''s intestine. We also observed A. nanus feeding, growing, and reproducing on the Gram-positive bacterium Clavibacter toxicus, the causative agent of the disease annual ryegrass toxicity, and detected crushed bacteria in the nematode''s intestine.  相似文献   

9.
Laboratory and microplot experiments were conducted to determine the influence of carrier and storage of Paecilomyces lilacinus on its survival and related protection of tomato against Meloidogyne incognita. Spores of P. lilacinus were prepared in five formulations: alginate pellets (pellets), diatomaceous earth granules (granules), wheat grain, soil, and soil plus chitin. Fungal viability was high in wheat and granules, intermediate in pellets, and low in soil and chitin-amended soil stored at 25 ± 2 C. In 1985 P. lilacinus in field microplots resulted in about a 25% increase in tomato yield and 25% gall suppression, compared with nematodes alone. Greatest suppression of egg development occurred in plots treated with P. lilacinus in pellets, wheat grain, and granules. In 1986 carryover protection of tomato against M. incognita resulted in about a threefold increase in tomato fruit yield and 25% suppression of gall development, compared with plants treated with nematodes alone. Higher numbers of fungus-infected egg masses occurred in plots treated with pellets (32%) than in those treated with chitin-amended soil (24%), wheat (16%), granules (12%), or soil (7%). Numbers of fungal colony-forming units per gram of soil in plots treated with pellets were 10-fold greater than initial levels estimated at planting time in 1986.  相似文献   

10.
The effects of Meloidogyne incognita or M. javanica at five initial inoculum levels of 20, 100, 200, 1,000, and 2,000 eggs and infective juveniles per seedling on ''Floradade,'' ''Nemarex,'' ''Patriot,'' and ''PI 129149-2(sib)-5'' tomatoes maintained at 25 or 32.5 C were studied. The number of egg masses on roots of the susceptible cultivar Floradade was similar for both species of root-knot nematodes at either 2.5 or 32.5 C soil temperatures. At 25 C, very low numbers of egg masses were produced by both species of root-knot nematodes on Nematex, Patriot, and Lycopersicon peruvianum PI 129149-2(sib)-5. At 32.5 C, the best inoculum level for assessing resistance in these tomato genotypes was 200 eggs and infective juveniles per seedling. With 28 days of incubation, this temperature and inoculum level produced quantitative differences in resistance for both species of Meloidogyne.  相似文献   

11.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

12.
''Amsoy'' soybeans were grown for 2 months in nonsterilized Jackson silt loam amended to pH 4.0, 6.0, and 8.0. Nematodes were extracted biweekly from soil and roots. The greatest numbers of Pratylenchus alleni colonized soybean roots at pH 6.0. Hoplolaimus galeatus and members of the Tylenchinae-Psilenchinae survived best at pH 6.0, while numbers o f the Dorylaimoidea were greatest at both pH 6.0 and 8.0. The non-stylet nematodes were recovered in greater numbers from pH 8.0 soil. Potassium, manganese, and phenols were highest in soybean plants grown in pH 4.0 soil, the pH at which there were the fewest nematodes. A thicker suberized outer layer o f root tissue occurred in plants grown at pH 4.0.  相似文献   

13.
The ring nematode (Criconemoides ornatus), stunt nematode (Tylenchorhynchus martini), and sting nematode (Belonolaimus Iongicaudatus) reproduced readily on six bermudagrasses (Common, ''U-3'', ''Tufcote'', ''Continental'', ''Tiffine'', and ''Tifdwarf''). Populations of a single nematode species influenced the population development of a second and third parasitic nematode species on a particular host plant. Activity of most nematodes adversely affected reproduction of other nematode species in mixed cultures. Generally, the number of fibrous roots produced by plants decreased as the number of nematode species in the treatments increased. Tifdwarf bermudagrass appeared to be more tolerant to C. ornatus and T. martini than other grasses tested.  相似文献   

14.
A hypothesis that cherry rootstocks grown under optimal nutrient conditions are affected less by Pratylenchus penetrans infection than those grown under deficient nutrient conditions was tested by growing four Prunus avium L. rootstocks (''Mazzard'', ''Mahaleb'', ''GI148-1'', and ''GI148-8'') at a soil pH of 7.0 over a period of 3 months under greenhouse conditions (25 ñ 2 °C). Pratylenchus penetrans was inoculated at 0 (control) or 1,500 nematodes per g fresh root weight for a total of 3,600, 4,200, 10,500, and 11,400 per plant on Mazzard, Mahaleb, GI148-1, and GI148-8, respectively, with nutrients (commercial fertilizer) applied once at planting (deficient) or twice weekly (optimal). The experiment was repeated once. The optimum nutrient regime resulted in greater soil nutrient levels and plant growth; higher leaf concentrations of N, P, K, and Mg; and fewer P. penetrans than under the deficient nutrient regime. The addition of fertilizer either may increase nematode mortality in the soil or improve rootstock resistance to nematode infection. Increases in Ca in leaves from the nutrient-deficient and nematode-infected treatments suggested the plants were physiologically stressed. The Pf/Pi ratios indicated that these rootstocks may have had resistance to P. penetrans; however, because of the dominant role of nutrition in the experimental design, the question of resistance could not be properly addressed.  相似文献   

15.
Rates of reproduction of root-knot nematodes on corn varied with Meloidogyne species, with different populations of certain species, and with corn cultivars. M. arenaria, M. incognita and M. javanica reproduced at varying rates on all corn cultivars tested. None of the three selections of M. hapla reproduced on corn. Most of the Meloidogyne populations increased more rapidly on ''Coker'' and ''Pioneer'' hybrids than on ''McNair'' hybrids or on open-pollinated varieties or inbreds. Nematodes often reduced root growth, but the differences within given nematode-cultivar treatments were not usually significant. Root growth of ''Coker 911,'' which supported a high rate of reproduction, was affected less than ''Pioneer 309B'' which supported a low rate of nematode reproduction.  相似文献   

16.
The interaction between Pratylenchus neglectus (Pn) and Meloidogyne chitwoodi (Mc) was investigated at soil temperatures of 15, 20, and 25 C on barley and potato. Maximum numbers of Pn and Mc penetrated barley roots at 20 C, whereas a minimum number penetrated at 15 C. Pratylenchus neglectus restricted root penetration by Mc over time and vice-versa. Population densities of each species increased with increasing temperature. Concomitant inoculation of the two species resulted in lower numbers of Pn at 15 and 25 C in both barley and potato, whereas the numbers of Mc were lower at 15 C in barley and at 25 C in potato. Root weights of potato and barley at 15 and 20 C, respectively, were lowered by the presence of both nematodes singly or concomitantly. At 25 C, barley plants inoculated with Mc alone had lower shoot weight than uninoculated controls, but the damage was restricted when Pn also was present. The two species interact competitively, and the outcome varies with soil temperature and host plant. Pn has the potential to suppress Mc population levels and reduce the damage it causes to potato and barley.  相似文献   

17.
Greenhouse studies examined population densities of Meloidogyne incognita race 4 on soybean (Glycine max ''Davis'') defoliated by larvae of soybean looper (Pseudoplusia indudens (Walker)). Plants were defoliated over a 2-week period beginning 5 weeks after seedlings were transplanted. Four groups of plants were infested with nematodes (5,000 eggs/pot) at 2-week intervals to allow harvesting of plants at 0, 2, 4, and 6 weeks postdefoliation (WPD). Plants in each group were harvested 4 weeks after nematode infestation. Root and nodule weights of defoliated plants were suppressed at 0 WPD, but differences were not detectable at 2, 4, and 6 WPD. Population densities of M. incognita were similar on defoliated and control plants at 0 WPD but were greater on defoliated plants at 4 and 6 WPD. Percentage hatching of eggs produced on the latter plants also was higher. Effects of insect-induced defoliation on development of M. incognita remained detectable even after soybean plant growth apparently returned to normal.  相似文献   

18.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

19.
''Floratam'' and ''FX-313'' St. Augusfinegrasses (Stenotaphrum secundatum) were compared in a time-course experiment for host suitability and susceptibility to the lance nematode, Hoplolaimus galeatus. Nematode densities were determined in the soil and acid-fuchsin stained roots 42, 84, 126, 168, and 210 days after pots containing 230 cm³ of autoclaved native Margate fine sand/pot were infested with 104 ± 9 nematodes and maintained at 25 ± 2 C in the laboratory. ''FX-313'' was a more suitable host for H. galeatus. Numbers of H. galeatus reached a maximum at 210 days after inoculation, with 5,550 and 4,120 nematodes (adults plus juveniles)/pot for ''FX-313'' and ''Floratam,'' respectively. Root and shoot dry weights of both grasses were not affected by H. galeatus throughout the experiment. Three polyploid, 2n = 30 to 32 (''Floratam,'' ''FX-10,'' and ''Bitterblue'') and three diploid, 2n = 18 (''FX-313,'' ''Florida Common,'' and ''Seville'') S. secundatum genotypes were inoculated with H. galeatus (99 ± 9/pot) and compared with uninoculated controls 210 days after inoculation. St. Augustinegrass genotypes differed as hosts of H. galeatus. ''FX-313'' and ''Florida Common'' represented the high and low extremes, respectively, for nematode reproduction (9,750 and 5,490 nematodes/pot or 4,239 and 2,387 nematodes/100 cm³ of soil). However, differences in root and shoot growth were not detected 210 days after inoculation with H. galeatus.  相似文献   

20.
Root-knot nematode-susceptible melons (Cantaloupe) were grown in pots with varying levels of Meloidogyne incognita and were compared to susceptible melons that were grafted onto Cucumis metuliferus or Cucurbita moschata rootstocks. In addition, the effect of using melons as transplants in nematode-infested soil was compared to direct seeding of melons in nematode-infested soil. There were no differences in shoot or root weight, or severity of root galling between transplanted and direct-seeded non-grafted susceptible melon in nematode-infested soil. Susceptible melon grafted on C. moschata rootstocks had lower root gall ratings and, at high nematode densities, higher shoot weights than non-grafted susceptible melons. However, final nematode levels were not lower on the grafted than on the non-grafted plants, and it was therefore concluded that grafting susceptible melon on to C. moschata rootstock made the plants tolerant, but not resistant, to the nematodes. Grafting susceptible melons on C. metuliferus rootstocks also reduced levels of root galling, prevented shoot weight losses, and resulted in significantly lower nematode levels at harvest. Thus, C. metuliferus may be used as a rootstock for melon to prevent both growth reduction and a strong nematode buildup in M. incognita-infested soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号