首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Complete Characterization of the Race Scheme for Heterodera glycines   总被引:3,自引:0,他引:3  
One hundred thirty-eight isolates of Heterodera glycines from nine states in the United States, People''s Republic of China, and Indonesia were tested on the four standard soybean race differentials. A total of 12 variants were found, including the five races described previously. The seven variants that did not correspond to one of the described races and reports from other areas of populations that could not be classified are evidence that the present race classification system needs to be fully characterized. Eleven additional races are described; this expands the total to 16 races, the maximum possible using the four prescribed differentials and a + or - rating for each. The seven new races are designated as 6, 9, 10, 13, 14, 15, and 16. This complete characterization of the race scheme will allow for immediate communication of the discovery of the remaining four races plus the identification of previous undescribed races.  相似文献   

2.
Vulval cones of four closely related Heterodera species - H. glycines (races 1-5), H. lespedezae, H. schachtii, and H. trifolii - were examined using scanning electron microscopy. Numbers of dorsal and ventral radial ridges, total radial ridges, perineal ridges, and preanal ridges were useful in differentiating the five races of H. glycines and the other three species. Most of the populations differed significantly (P < 0.01) using the Waller-Duncan k-ratio t-test for mean separation of the five characters. H. glycines races 2, 4, and 5 were most similar. H. schachtii and H. trifolii were most dissimilar to each other and to H. lespedezae and H. glycines. Two additional qualitative characters were also useful in differentiating the populations. The shallower, shorter radial ridges of H. glycines provided a basis for separation from the other three species. Width and smoothness of the perineal ridges were useful in differentiating both races and species.  相似文献   

3.
The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines.  相似文献   

4.
Thirteen soybean plant introduction (PI) lines, selected for their apparent susceptibility to Heterodera glycines, were compared with cultivar Lee 74 as hosts of H. glycines races 1, 2, 3, and 4. Race 3 produced the highest average number of females of the four races. Compared to Lee 74, more (P = 0.05) females of H. glycines race 1 were extracted from eI 274420, PI 274423, and PI 317333; PI 86457 had more females of H. glycines race 2; and PI 86443, PI 86457, PI 261467, PI 274420, PI 274421, and PI 274423 had more females of H. glycines race 3. Similar numbers of females of H. glycines race 4 developed on all of the soybean lines and Lee 74. PI 274421, PI 274420, or PI 196159 could provide a more or equally susceptible host for H. glycines races 1, 2, 3, and 4 than Lee 74. One of these three lines could be substituted for Lee as the standard susceptible cultivar in the race determination test.  相似文献   

5.
Four of five geographical isolates of Heterodera glycines from Indiana classified as Race 3 using standard differentials showed many differences when classified using another group of differentials comprised of five soybean breeding lines and cultivars. Two isolates from northern Indiana produced cysts on more of the differentials tested than did three isolates from southern Indiana, suggesting that potential resistant lines should be tested on a range of H. glycines populations originating from the areas for which cultivars are being developed.  相似文献   

6.
A total of 62 populations of Heterodera glycines were collected in 10 states along the Mississippi and Missouri rivers, and 206 populations were collected in Arkansas. Among the 62 populations, races 2, 3, 4, 5, 6, 9, and 14 were found south of 37°N latitude, and races 1 and 3 were found north of 37°N latitude. In Arkansas samples, races 2, 4, 5, 6, 9, and 14 comprised 87% of the populations. In both groups of samples, H. glycines populations with genes that enabled the population to parasitize cv. Pickett occurred the most frequently, followed by those with genes for parasitism of cv. Peking, then PI88.788, and the fewest with genes for parasitism of PI90.763. The diversity of races in this study raises questions about the effectiveness of race-specific cultivars for the management of soybean cyst nematodes. The greater diversity of races of H. glycines in the southern United States may be because of a longer history of planting resistant cultivars.  相似文献   

7.
Optimization of the Heterodera glycines Race Test Procedure   总被引:1,自引:0,他引:1  
Effects of pot size, length of seedling radicle at the time of inoculation with Heterodera glycines, transplanting after inoculation, type and amount of inoculum, and temperature were tested to determine the optimum procedure for the H. glycines race test. Numbers of H. glycines females extracted from plants in 7.5-cm-d pots tended to be higher than numbers from 10-cm-d pots, but not significantly so. Radicle lengths from 2.5 cm to 7.5 cm had no effect. Transplanting after inoculation reduced the variation in the number of females extracted, but the numbers of females produced were very low. Plump females (40 per pot) or eggs (4,000 per pot) were the best inocula. A constant temperature of 28 C appeared to be optimum. More H. glycines females were extracted from plants 28 days after inoculation than at 35 days. Race tests in which all of these factors were included were still highly variable in the number of H. glycines females extracted from different replications of the same test host. Tests of several susceptible cultivars revealed differences in their capabilities as hosts of H. glycines races.  相似文献   

8.
Progeny from single females of four known races of Heterodera glycines Ichinohe were used to establish relatively uniform populations. Single females from these populations were mated with males of other races in all possible combinations to study compatibility and inheritance patterns. When race 1 or 3 was crossed with either race 2 or 4, there was a significant reduction in number of females and a greater number of eggless females than in crosses of races 1 × 3 and 2 × 4. More females matured and fewer were eggless when matings were of the same race. Parasitic capabilities of races 2 and 4 were dominant or partially dominant over those of races 1 and 3, based on parasitism of F₁ hybrids. Segregation patterns were generally similar for reciprocal crosses between races. There appeared to be either one or two major genes segregating for parasitism of ''Pickett'' soybean in the different crosses. A hybrid isolate (race 3 × 4) that differed in parasitic capability from the four known races produced as many females on the resistant soybean genotype, PI 90,763, as on the susceptible Lee cultivar. Those data indicate that isolates of H. glycines with a different parasitic capability may develop from gene recombination.  相似文献   

9.
Modified polyacrylamide gel and SDS-polyacrylamide gel electrophoretic systems using a low molarity tris-HCl buffer and equal pH of homogenizing buffer and stacking gel provided improved stacking for separation of soluble proteins from Heterodera schachtii, H. trifolii, H. lespedezae, and H. glycines races 1, 2, 3, and 4, compared with previous studies with cyst nematodes, The four Heterodera species were easily distinguished using the polyacrylamide gel system, but H. trifolii and H. lespedezae had similar protein patterns. H. glycines races were not separable by that system. The SDS-polyacrylamide gel system produced different protein patterns for all four Heterodera species although H. trifolii and H. lespedezae differed by only a single band, suggesting that these two may be subspecifically related. A protein band unique to H. glycines races 3 and 4 was not detected in SDS-polyacrylamide gel profiles from races 1 and 2. Molecular weight determinations were 55,000 for distinctive proteins in profiles of H. trifolii and 75,000 for H. glycines races 3 and 4.  相似文献   

10.
Currently there are 16 possible races for Heterodera glycines, and these are differentiated based on ability of a nematode population to develop on a set of four differential soybean genotypes. Because results are based on numbers of nematode females that develop to a specific stage rather than on the reproductive capability of these females, race determinations based on female indices may not represent results obtained after several reproductive cycles of H. glycines. Counting numbers of eggs and juveniles, and then developing corresponding indices, would allow reproduction to be considered in making race determinations. Our objectives were to compare the present race identification scheme for H. glycines based on female indices with those using egg and juvenile indices and to examine the effect of temperature on race designations using female, egg, and juvenile indices. Race designations for H. glycines populations from two locations in Illinois were determined at 20, 27, and 30 °C in a water bath. The numbers of females, eggs, and juveniles (at 19 days) were recorded, and an index based on each life stage was calculated. Race determinations based on female, egg, or juvenile indices were inconsistent when conducted at 20 °C, which demonstrates that this temperature is not suitable for identifying races of H. glycines. However race designations at 27 and 30 °C were consistent for all three indices. This indicates that counting females, eggs, or juveniles should be equally reliable when race determinations are conducted at these two temperatures, and choice of method would depend on investigator preference or research objective.  相似文献   

11.
Restriction fragment patterns of mitochondrial DNA from sibling species of cyst nematodes Heterodera glycines and H. schachtii were examined. Fourteen restriction endonucleases recognizing four, five, and six base-pair sequences yielded a total of 90 scorable fragments of which 10% were shared by both species. Mitochondrial genome sizes for H. glycines and H. schachtii were estimated to be 22.5-23.5 kb and 23.0 kb, respectively. A single wild type mitochondrial genome was identified in all populations of H. glycines examined, although other mitochondrial genomes were present in some populations. The H. schachtii genome exhibited 57 scorable fragments, compared with 33 identified in the H. glycines wild type genome. The estimated nucleotide sequence divergence between the two species was p = 0.145. This estimate suggests these species diverged from a common ancestor 7.3-14.8 million years ago.  相似文献   

12.
The objective of this study was to determine the interrelationships of Heterodera glycines races based on their resistance to soybean (Glycine max) cultivars and lines against which they were tested. Greenhouse tests determined the numbers of females of each of eight races of H. glycines that developed on 277 to 522 soybean cultivars and lines. A Female Index (number of females on a test cultivar as a percentage of the number on ''Lee 74'') was calculated and used in frequency distributions, correlations, and duster analyses of the resistance reactions to the different races in an attempt to determine relationships among cultivars. Frequency distribution patterns of all cultivars and lines tested against each race were skewed in favor of resistance, and in some cases bimodality was observed. The majority of correlations between pairs of races were highly significant. Cluster analyses based on the correlations divided eight races into four clusters that explained 73% of the variation in resistance. Cluster 1 was comprised of races 2, 4, and 14; Cluster 2 was comprised of races 6 and 9; Cluster 3 was comprised of races 1 and 3; and Cluster 4 was comprised of race 5. The information obtained in this study could increase the efficiency of testing resistant soybean breeding lines for resistance to H. glycines.  相似文献   

13.
Scanning electron microscopy (SEM) was used to compare juvenile cephalic morphology of the five described races of Heterodera glycines. Races 1, 2, 3, and 4 were obtained in the United States and race 5 was obtained from Japan. Differences in the gross morphology o f labial discs; ventral, dorsal and lateral lips; amphidial apertures; and fissures on the labial disc o f some specimens were observed. There was considerable interracial and intraracial variation which precluded separation o f juveniles of H. glycines races by SEM.  相似文献   

14.
Heterodera glycines, the soybean cyst nematode, is a major yield-limiting pathogen in most soybean production areas worldwide. Field populations of H. glycines exhibit diversity in their ability to develop on resistant soybean cultivars. Since 1970, this diversity has been characterized by a bioassay used to assign a race classification to a population. The value of the race scheme is reflected in the number and quality of resistant soybean cultivars that have been developed and released by soybean breeders and nematologists working in concert. However, the race scheme also has been misapplied as a means of studying H. glycines genotypes, in part due to the use of the term "race." For fungal and bacterial pathogen species, "race" can theoretically be applied to individuals of a population, thus allowing inference of individual genotypes. Application of a race designation to an individual egg or second-stage juvenile (J2) of H. glycines is not possible because a single J2 cannot be tested on multiple hosts. For other nematode species, "race" is defined by host ranges involving different plant species, whereas the H. glycines race test involves a set of lines of the same plant species. Nonetheless, because H. glycines populations vary in genetic diversity, and this variation has implications for management strategies, a mechanism is needed for documenting and discussing population differences. The HG Type scheme described herein avoids the implication of genetic uniformity or predictability in contrast to the way the race scheme has been used.  相似文献   

15.
A field population of Heterodera glycines was inbred by a combination of controlled male-female matings and inoculation of soybean with second-stage juveniles (J2) from single cysts. The initial and four F₆ inbred populations were subjected to random amplified polymorphic DNA analysis and were also tested for their ability to reproduce on race differentials. The RAPD patterns of the inbred populations had a lower number of total bands and a lower percentage of polymorphic bands among individual cysts than the initial population. The estimated number of polymorphic loci detected by RAPD analysis was about 25% for the initial population and 4% to 7% for the inbred lines. Reproduction of H. glycines decreased for 6 of 24 inbred-soybean combinations. In particular, reproduction of three inbred populations on PI 90763 was greatly reduced. Inbreeding did not decrease variance of cyst number on soybean genotypes. The inbreeding coefficient calculated from RAPD data was greater than that derived from the known inbreeding pedigree.  相似文献   

16.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

17.
Knowledge of the virulence phenotypes of soybean cyst nematode, Heterodera glycines populations is important in choosing appropriate sources for breeding resistant cultivars and managing the nematode. We investigated races of 59 H. glycines populations collected from 1997 to 1998 and races and HG Types of 94 populations collected in 2002 from soybean fields across southern and central Minnesota. In the 1997 to 1998 samples, race 3 was predominant and represented 78% of the populations. The remaining populations were 11.9% race 1, 1.7% race 4, 6.8% race 6, and 1.7% race 14. In the 2002 samples, the populations were classified as 15.3% race 1, 77.6% race 3, 2.4% race 5, 3.5% race 6 and 1.2% race 9. Percentage of 1997 to 1998 populations with female indices (FI) higher than 10 were 10.2% on Pickett 71, 3.4% on Peking, 13.6% on PI 88788, 3.4% on PI 90763, 1.7% on PI 209332, and 1.7% on PI 437654. Percentage of 2002 populations with FI >10 was 1.1% on Peking, 17.0% on PI88788, 14.9% on PI 209332, 33.0% on PI 548316, 11.7% on Pickett 71, and 0% on the other three indicators, PI 90763, PI 437654, and PI 89772. The line PI 548316 was relatively susceptible to the Minnesota H. glycines populations and may not be recommended for breeding resistant cultivars in the state. There was no noticeable change of frequencies of virulence phenotypes in response to the use of resistant cultivars during 1997 to 2002 in Minnesota except that FI increased on the PI 209332.  相似文献   

18.
Four populations of Heterodera glycines from four different states differed considerably in numbers of adult females developed on five resistant soybean cultivars, mungbean and lespedeza. Differences were observed also in body, tail and tail terminus lengths of second-stage larvae. No attempt was made to assign these populations to recognized races, and it is suggested that race designations should be applied only to representative samples of field populations and not to selected greenhouse populations or isolates.  相似文献   

19.
Egg hatch and emergence of second-stage juveniles (J2) of Heterodera glycines races 3 and 4 from cysts exposed to soybean root leachate of cv. Fayette (resistant to H. glycines) and H. glycines-susceptible cultivars A2575, A3127, and Williams 82 were determined in three sets of experiments. In the first experiment, cysts of both race 3 and race 4 were exposed to leachate of 8-week-old plants for a 2-week period. In the second experiment, cysts from populations of races 3 and 4 were raised on cultivars A2575, A3127, and Williams 82. Cysts then were exposed to leachate from 8-week-old plants for a 2-week period in all possible race-per-cultivar combinations. In the third experiment, cysts of races 3 and 4 were exposed at 4-day intervals to leachate from plants as the plants developed 7 to 59 days after planting. In experiments 1 and 2, leachate from 8-week-old Williams 82 and A3127 stimulated more hatch and emergence of H. glycines than leachate from A2575, Fayette, or the control. In the first experiment, cumulative hatch and emergence were greater for race 3 than for race 4. In experiment 2, no apparent relationship developed between leachate from a cultivar and the population developed on that cultivar in terms of stimulation of hatch and emergence. In the third experiment, A2575 stimulated more hatch and emergence of both race 3 and race 4 than A3127, Fayette, and Williams 82. Leachate from Fayette stimulated less hatch and emergence of both race 3 and race 4. Hatch and emergence were greatest during the initial 12 days of the experiment.  相似文献   

20.
The soybean cyst nematode, Heterodera glycines, is one of the most economically important pathogens of soybean. Effective management of the nematode is often dependent on the planting of resistant soybean cultivars. During the past 40 years, more than 60 soybean genotypes and plant introductions (PI) have been reported as resistant to H. glycines. About 130 modern soybean cultivars registered in the United States are resistant to certain races of H. glycines. Several resistance genes have been identified and genetically mapped; however, resistance levels in many soybean cultivars are not durable. Some older cultivars are no longer resistant to certain H. glycines populations in many production areas, especially if a soybean monoculture has been practiced. Past soybean registration reports show that all resistant cultivars developed in public institutions from the mid-1960s to the present have been derived from five PIs. This narrow genetic background is fragile. To further complicate the issue, soybean-H. glycines genetic interactions are complex and poorly understood. Studies to identify soybean resistance genes sometimes have overlapped, and the same genes may have been reported several times and designated by different names. Nevertheless, many potential resistance genes in existing germplasm resources have not yet been characterized. Clearly, it is necessary to identify new resistance genes, develop more precise selection methods, and integrate these resistance genes into new cultivars. Rational deployment of resistant cultivars is critical to future sustained soybean production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号