共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
电刺激大鼠束旁核对底丘脑核和丘脑腹内侧核神经元的影响 总被引:1,自引:0,他引:1
本工作旨在探讨电刺激束旁核(parafascicular nucleus,PF)对帕金森病模型(Parkinson’s disease,PD)大鼠神经行为的改善作用及其机制。成年雄性Sprague—Dawley大鼠黑质致密部注射6一羟基多巴胺建立PD大鼠模型。采用行为学方法观察电刺激PF对阿朴吗啡诱发的大鼠旋转行为的作用,并应用在体细胞外记录法观察电刺激PF对大鼠底丘脑核(subthalamic nucleus,STN)及丘脑腹内侧核(ventromedial nucleus,VM)神经元放电的影响。结果发现,高频电刺激(130Hz,0.4mA,5s)PF一周,明显改善PD大鼠旋转行为。细胞外放电记录显示,高频电刺激PF使PD大鼠STN神经元自发放电减少,且该作用具有频率依赖性。另外,高频电刺激PF可使VM神经元兴奋,该作用也是频率依赖性的。我们在实验中同时观察到微电泳谷氨酸(glutamicacid,Glu)受体拮抗剂MK-801使STN神经元放电频率减少或完全抑制,微电泳t氨基丁酸(T-amino butyricacid,GABA)受体拮抗剂印防己毒素(picrotoxin,Pic)则使神经元放电频率增加。以上结果表明,GABA能和GIu能传入纤维可会聚于同-STN神经元,并对后者有紧张性作用。高频刺激PF,使该核团到STN神经元的Glu能兴奋性输出减少,导致STN的失活。这一作用通过基底神经节的间接通路,最终释放了丘脑运动核团VM的活性。高频刺激PF经PF,STN和VM的神经通路而改善PD大鼠神经行为。 相似文献
3.
目的:探讨力竭过程中丘脑底核(SIN)对皮层兴奋性的调控作用。方法:采用皮层脑电(ECoG)及局部场电(LFPs)同步记录技术,对一次性力竭运动过程中大鼠SIN、皮层神经元电活动变化规律进行同步、动态观察。结果:运动开始阶段大鼠能够自主跟随跑台进行运动,运动持续约45min时(45±11.5min),自我驱动下的运动能力明显降低;此时STN兴奋性显著增加(P〈0.01),皮层兴奋性显著下降(P〈0.01)。如果给予大鼠一定的外部刺激后仍可继续运动一段时间直至力竭;力竭即刻皮层兴奋性降到最低值(P〈0.01),而SIN兴奋性变化不显著(P〉0.05)。结论:大鼠在力竭运动过程中,皮层运动区神经元电活动随着运动疲劳的发生呈现广泛的抑制现象,而SIN神经元电活动在疲劳初期则明显增强,SIN通过负诱导作用参与了运动性中枢疲劳的调控,且STN神经元兴奋性增强可能是皮层实现保护性抑制机制的重要途径之一。 相似文献
4.
Ampe B Massie A D'Haens J Ebinger G Michotte Y Sarre S 《Journal of neurochemistry》2007,103(3):1063-1074
The present study investigated the effects of N-methyl-D-aspartic acid.H2O (NMDA) on the dopamine, glutamate and GABA release in the subthalamic nucleus (STN) by using in vivo microdialysis in rats. NMDA (100 micromol/L) perfused through the microdialysis probe evoked an increase in extracellular dopamine in the STN of the intact rat of about 170%. This coincided with significant increases in both extracellular glutamate (350%) and GABA (250%). The effect of NMDA perfusion on neurotransmitter release at the level of the STN was completely abolished by co-perfusion of the selective NMDA-receptor antagonist MK-801 (10 micromol/L), whereas subthalamic perfusion of MK-801 alone had no effect on extracellular neurotransmitter concentrations. Furthermore, NMDA induced increases in glutamate were abolished by both SCH23390 (8 micromol/L), a selective D1 antagonist, and remoxipride (4 micromol/L), a selective D2 antagonist. The NMDA induced increase in GABA was abolished by remoxipride but not by SCH23390. Perfusion of the STN with SCH23390 or remoxipride alone had no effect on extracellular neurotransmitter concentrations. The observed effects in intact animals depend on the nigral dopaminergic innervation, as dopamine denervation, by means of 6-hydroxydopamine lesioning of the substantia nigra, clearly abolished the effects of NMDA on neurotransmitter release at the level of the STN. Our work points to a complex interaction between dopamine, glutamate and GABA with a crucial role for dopamine at the level of the STN. 相似文献
5.
Périer C Marin C Jimenez A Bonastre M Tolosa E Hirsch EC 《Journal of neurochemistry》2003,86(6):1328-1337
Inactivation of the subthalamic nucleus (STN) or the internal segment of the pallidum (GPi)/entopeduncular nucleus (EP) by deep brain stimulation or lesioning alleviates clinical manifestations of Parkinson's disease (PD) as well as reducing the side-effects of levodopa treatment. However, the effects of STN or entopeduncular nucleus (EP) lesion on levodopa-related motor fluctuations and on neurochemical changes induced by levodopa remain largely unknown. The effects of such lesions on levodopa-induced motor alterations were studied in 6-hydroxydopamine (6-OHDA)-lesioned rats and were assessed neurochemically by analyzing the functional activity of the basal ganglia nuclei, using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase as molecular markers of neuronal activity. At the striatal level, preproenkephalin (PPE) mRNA levels were analyzed. We found in 6-OHDA-lesioned rats that a unilateral STN or EP lesion ipsilateral to the 6-OHDA lesion had no effect on either the shortening in the duration of the levodopa-induced rotational response or the levodopa-induced biochemical changes in the basal ganglia nuclei. In contrast, overexpression of PPE mRNA due to levodopa treatment was reversed by the STN or EP lesion. Our study thus shows that lesion of the EP or STN may counteract some of the neurochemical changes induced by levodopa treatment within the striatum. 相似文献
6.
Wang DS Lu SY Hong Z Zhu HL 《Biochemical and biophysical research communications》2003,309(4):893-899
The effect of the benzodiazepine agonist midazolam on gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated currents was investigated in neurons acutely dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. Midazolam displayed a biphasic effect on GABA responses. Low concentrations of midazolam (1nM-10 microM) reversibly potentiated GABA (3 microM)-activated Cl(-) currents (I(GABA)) in a bell-shaped manner, with the maximal facilitary effect at 0.1 microM; whereas at higher concentrations (above 10 microM), midazolam had an antagonistic effect on I(GABA). Our further study indicated that midazolam changed GABA(A) receptor affinity to GABA and the effects of midazolam on I(GABA) were voltage-independent. The benzodiazepine receptor antagonist, flumazenil, abolished the facilitary effect of low concentrations of midazolam rather than the antagonism of I(GABA) induced by high doses of midazolam. In addition, activation of protein kinase C prevented the inhibitory effect of midazolam at higher concentrations, but did not influence the effect of midazolam at low concentrations. These results indicate that midazolam interacts with another distinct site other than the central benzodiazepine receptors on GABA(A) receptors as an antagonist at higher concentrations in SDCN neurons. 相似文献
7.
8.
9.
Xenopus spinal neurons serve as a nearly ideal population of excitable cells for study of developmental regulation of electrical excitability. On the one hand, the firing properties of these neurons can be directly examined at early stages of differentiation and membrane excitability changes as neurons mature. Underlying changes in voltage-dependent ion channels have been characterized and the mechanisms that bring about these changes are being defined. On the other hand, these neurons have been shown to be spontaneously active at stages when action potentials provide significant calcium entry. Calcium entry provokes further elevation of intracellular calcium via release from intracellular stores. The resultant transient elevations of intracellular calcium encode differentiation in their frequency. Recent studies have shown that different neuronal subpopulations enlist distinct mechanisms for regulation of excitability and recruit specific programs of differentiation by particular patterns of activity. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 190–197, 1998 相似文献
10.
中脑腹侧被盖区(ventral tegmental area,VTA)多巴胺能神经元的簇放电会导致其突触末梢多巴胺释放量瞬时大量增加,已被公认是编码奖赏效应的功能相关信号,但诱发多巴胺能神经元产生簇放电的神经调节的具体机制尚不完全清楚。为深入理解诱发VTA多巴胺能神经元产生簇放电介导奖赏信号的递质机制和不同脑区间的协同作用,本实验利用大鼠离体脑片,研究了胆碱能受体激动剂卡巴胆碱单独灌流,兴奋性谷氨酸能受体激动剂L-谷氨酸单独脉冲式给药及二者同时作用时VTA多巴胺能神经元簇放电的产生。结果显示,在离体脑片,卡巴胆碱(10μmol/L)持续灌流或L-谷氨酸(3mmol/L)脉冲式给药均能够诱发多巴胺能神经元产生簇放电。在二者单独作用不能诱发簇放电的神经元,卡巴胆碱和谷氨酸联合用药则可以诱发出簇放电。这些结果提示,卡巴胆碱和L-谷氨酸在诱发多巴胺能神经元簇放电的过程中具有协同作用。 相似文献
11.
C. Amat B. Hue 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,178(1):105-115
Among the three clusters of dorsal unpaired median neurons of the Periplaneta americana terminal abdominal ganglion, another type of neuron has been characterized by anterograde cobalt stainings and microelectrode technique. These neurons are bilaterally distributed in the ganglion. Their axons ipsilaterally exit the ganglion via the anterior proctodeal nerves, to innervate the proctodeum. They are characterized by a long-duration overshooting action potentials and a low firing frequency. Most often the depolarizing phase is composed of two peaks: a fast spike followed by a slow phase. Tetrodotoxin suppressed the fast peak and blocked the spontaneous activity suggesting that sodium channels are involved in the depolarizing phase as well as in the initiation of the action potential. Calcium channel blockers induced a disappearing of the slow depolarizing phase indicating the participation of calcium ions and a reduction of the afterhyperpolarization reflecting the participation of calcium-activated potassium channels. Furthermore, cadmium, as lanthanum or barium, induced a long-lasting plateau potential, which would be due to a persistent sodium conductance. Tetraethylammonium increased the duration of the action potential indicating that potassium channels are implicated in the falling phase. The results demonstrate that these neurons are different from other cells, especially dorsal unpaired median neurons, of the central nervous system of the cockroach.Abbreviations
DUM
dorsal unpaired median
-
SDP
slow depolarizing phase
-
AP
action potential
-
PAP
plateau action potential
-
TAG
terminal abdominal ganglion
-
CNS
central nervous system 相似文献
12.
13.
14.
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. 相似文献
15.
《Journal of receptor and signal transduction research》2013,33(3):156-162
Levetiracetam (LEV), a new anticonvulsant agent primarily used to treat epilepsy, has been used in pain treatment but the cellular mechanism of this action remains unclear. This study aimed to investigate effects of LEV on the excitability and membrane depolarization-induced calcium signaling in isolated rat sensory neurons using the whole-cell patch clamp and fura 2–based ratiometric Ca2+-imaging techniques. Dorsal root ganglia (DRG) were excised from neonatal rats, and cultured following enzymatic and mechanical dissociation. Under current clamp conditions, acute application of LEV (30 µM, 100 µM and 300 µM) significantly increased input resistance and caused the membrane to hyperpolarize from resting membrane potential in a dose-dependent manner. Reversal potentials of action potential (AP) after hyperpolarising amplitudes were shifted to more negative, toward to potassium equilibrium potentials, after application of LEV. It also caused a decrease in number of APs in neurons fired multiple APs in response to prolonged depolarization. Fura-2 fluorescence Ca2+ imaging protocols revealed that HiK+ (30 mM)-induced intracellular free Ca2+ ([Ca2+]i) was inhibited to 97.8 ± 4.6% (n = 17), 92.6 ± 4.8% (n = 17, p < 0.01) and 89.1 ± 5.1% (n = 18, p < 0.01) after application of 30 µM, 100 µM and 300 µM LEV (respectively), without any significant effect on basal levels of [Ca2+]i. This is the first evidence for the effect of LEV on the excitability of rat sensory neurons through an effect which might involve activation of potassium channels and inhibition of entry of Ca2+, providing new insights for cellular mechanism(s) of LEV in pain treatment modalities. 相似文献
16.
17.
Molecular mechanisms underlying tauopathy remain undetermined. In the current study, single cell gene expression profiling was coupled with custom-designed cDNA array analysis to evaluate tau expression and other cytoskeletal elements within individual neuronal populations in patients with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Results revealed a shift in the ratio of three-repeat tau (3Rtau) to four-repeat tau (4Rtau) mRNAs within individual human cholinergic basal forebrain (CBF) neurons within nucleus basalis (NB) and CA1 hippocampal neurons during the progression of AD, but not during normal aging. A shift in 3Rtau to 4Rtau may precipitate a cascade of events in the selective vulnerability of neurons, ultimately leading to frank neurofibrillary tangle (NFT) formation in tauopathies including AD. 相似文献
18.
To characterize the properties of static magnetic fields on firing of action potentials (AP) by sensory neurons in cell culture, we developed a mathematical formalism based on the expression for the magnetic field of a single circular current loop. The calculated fields fit closely the field measurements taken with a Hall effect gaussmeter. The biological effect induced by different arrays of permanent magnets depended principally on the spatial variation of the fields, quantified by the value of the gradient of the field magnitude. Magnetic arrays of different sizes (macroarray: four center-charged neodymium magnets of ?14 mm diameter; microarray: four micromagnets of the same material but of ?0.4 mm diameter) allowed comparison of fields with similar gradients but different intensities at the cell position. These two arrays had a common gradient value of ?1 mT/mm and blocked >70% of AP. Alternatively, cells placed in a field strength of ?0.2 mT and a gradient of ?0.02 mT/mm produced by the macroarray resulted in no significant reduction of firing; a microarray field of the same strength but with a higher gradient of ?1.5 mT/mm caused ?80% AP blockade. The experimental threshold gradient and the calculated threshold field intensity for blockade of action potentials by these arrays were estimated to be ?0.02 mT/mm and ?0.02 mT, respectively. In conclusion, these findings suggest that spatial variation of the magnetic field is the principal cause of AP blockade in dorsal root ganglia in vitro. © 1995 Wiley-Liss, Inc. 相似文献
19.
20.