首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
AM真菌和磷对小马安羊蹄甲幼苗生长的影响   总被引:1,自引:0,他引:1  
宋成军  曲来叶  马克明  傅伯杰  陈羚 《生态学报》2013,33(19):6121-6128
丛枝菌根(arbuscular mycorrhizal,AM)真菌在退化生态系统恢复与重建实践中具有重要作用。采用盆栽模拟方法,重点分析不同土壤磷条件下小马鞍羊蹄甲(Bauhinia faberi)幼苗接种AM真菌后,幼苗的形态、生物量积累、菌根侵染率和菌根效应(mycorrhizal growth response, MGR)在一个生长季内的动态变化。结果表明,Glomus mosseae Glomus coronatum能较好地侵染幼苗,两种AM真菌显著地增加幼苗根系、叶片数和生物量;接种AM真菌显著影响幼苗的生物量分配,而土壤磷对幼苗的生物量分配影响不明显,AM真菌和土壤磷对幼苗生长的交互作用显著;G. mosseae是小马鞍羊蹄甲的优势AM菌,其接种的幼苗根长、叶片数、生物量、侵染率和菌根效应都显著高于G. coronatum处理的幼苗;菌根效应显著,接种AM真菌能有缓解土壤磷素缺乏的限制作用,且随着苗龄增大促生作用表现更为明显。不同AM菌种对小马鞍羊蹄甲幼苗生长的促生作用表现出的差异,提示在多元资源限制的干旱贫瘠环境中进行生物修复须为目标恢复物种筛选出高效的优势AM真菌。  相似文献   

2.
AM真菌种间差异对枳壳生长及耐热性效应的研究   总被引:1,自引:0,他引:1  
用地表球囊霉、莫西球囊霉、珠状巨孢球囊霉及其混合菌剂接种无菌根枳壳幼苗进行盆栽试验,25℃培养4个月,观察对枳壳菌根形成和营养生长的影响,在40℃高温胁迫30d,调查分析菌根枳壳的耐热性。试验结果表明:接种AM真菌的根系形成了20%~80%的菌根侵染率;菌根枳壳的苗高、苗质量、节间长、茎基粗、须根数量和须根长度等营养生长显著增加;叶片中的SOD,POD活性和根系活力显著增强,可溶性蛋白、可溶性糖含量显著升高,叶片中的MDA含量降低,膜透性显著变小,枳壳苗的耐热性显著提高;但是,AM真菌在促进枳壳苗菌根化、营养生长和提高耐热性方面存在着种间差异,地表球囊霉、莫西球囊霉、珠状巨孢球囊霉、混合菌剂与枳壳根系形成丛枝菌根的侵染率依次为20.4%±1.2%、61.8%±3.4%、85.7%±2.7%、83.3%±2.2%,促进枳壳苗营养生长提高枳壳苗耐热能力的AM真菌依次为:地表球囊霉<莫西球囊霉<珠状巨孢球囊霉<混合菌剂,认为珠状巨孢球囊霉和莫西球囊霉是枳壳耐高温胁迫菌根化育苗的重要优良菌种。  相似文献   

3.
The effects of arbuscular mycorrhizae (AM) on the development and nutrition of the peach almond hybrid GF-677 rootstock in a replant soil heavily infested with Meloidogyne javanica were evaluated in field microplot conditions for two growing seasons. There was a significant beneficial effect of mycorrhizal inoculation on plant growth and nutrition in previously pasteurized replant soil. In natural replant soil, early inoculation with a mixed AM inoculum of Glomus intraradices, Glomus mosseae and Glomus etunicatum did not affect growth parameters. Whilst inoculation with these AM fungi led to suppression of root-knot nematode reproduction, natural mycorrhizal colonization of the replant soil with native AM fungi did not. Accepted: 6 December 2000  相似文献   

4.
The influences of a vesicular-arbuscular mycorrhiza (Glomus etunicatus) and burrowing nematode (Radophohts similis), alone and in combination, on the growth of rough lemon (Citrus limon) seedlings were studied in the greenhouse. Growth of mycorrhizal seedlings was significantly greater than that of nonmycorrhizal seedlings or seedlings inoculated with R. sindlis. Mycorrhizal stimulation of seedling growth was inhibited by nematode infection. When seedlings were inoculated with G. etunicatus arid R. similis, suppression of seedling growth by R. similis was less on VAM seedlings than on nonmycorrhizal seedlings, Nonmycorrhizal seedlings infected with R. similis were significantly smaller than nonmycorrhizal seedlings free of R. similis. Vesicle formation and mycelia growth were less in nematode-infected roots.  相似文献   

5.
The effect of Streptomyces albovinaceus (S-22) and Bacillus sp. (B1) on the growth response, nodulation, nutrition and nitrogenase activities of faba bean (Vicia faba) varieties infected with Glomus mosseae under pot conditions in sterile soil amended with chitin was studied. The growth, nodulation, nutrients content and nitrogenase activity of mycorrhiza-treated plants of Giza-667 were significantly increased compared to untreated ones. Such increases were related to the increase in mycorrhizal root infection. Amendment of soil with chitin alone reduced the growth, nodulation, total nitrogen contents and nitrogenase activities of mycorrhiza-treated faba bean plants (Giza-667) compared to untreated plants. Inoculation of plants with S. albovinaceus or Bacillus sp. significantly increased the level of mycorrhizal roots infection, but addition of chitin to the soil in combination with Bacillus sp. reduced the mycorrhizal infection of faba bean roots. Highest phosphorus contents of faba bean Giza-667 were recorded after G. mosseae inoculation in the presence of all treatments. Similar results were observed for the other varieties. The microbial populations were significantly increased in rhizospheres amended with chitin. Such increases were not in response to the mycorrhizal inoculation. Generally, the microflora of faba bean rhizospheres was increased after treatment with G. mosseae in the absence of chitin amendment alone compared with non-mycorrhizal rhizospheres.  相似文献   

6.
Sod cutting (i.e. top soil removal) is a restoration management option for enhancing seedling establishment and for lowering the nutrient concentration in eutrophicated soils of nutrient-poor species-rich grasslands. Removal of the upper soil changes not only abiotic soil properties but may also affect the resident soil community. We investigated the effects of sod cutting on the establishment and performance of two endangered plant species (Cirsium dissectum and Succisa pratensis) while simultaneously manipulating the interaction between seedlings and soil biota. In intact grassland and sod-cut areas at two localities, seedlings were grown in plastic tubes. Half of the tubes had a filter that excluded roots but allowed entry of fungal hyphae and soil microorganisms. The other tubes were closed (i.e. no contact with the surrounding soil). In a greenhouse experiment we studied the effect of soil solutions (with or without fungal tissue) from three grasslands and three sod-cut areas on seedling growth. Sod cutting had a positive net effect on seedling growth for S. pratensis. Access to (mycorrhizal) fungi and other soil biota resulted in a negative impact on seedling growth of both plant species, both in grassland and sod-cut areas. The greenhouse experiment confirmed that the soil biota in these meadows reduced seedling growth. Although sod cutting did not mitigate negative plant-soil feedback, it enhanced seedling growth, presumably by decreasing competition for light. Sod cutting is therefore very useful when seedling establishment needs to be stimulated.  相似文献   

7.
Seedlings of longleaf pine (Pinus palustris) were grown in 20-cm pots for 5 to 7 months in the greenhouse following inoculation with a high or low level of one of seven species of plant-parasitic nematodes. Belonolaimus longicaudatus and Helicotylenchus dihystera had no effect on seedling growth. High inoculum densities of Hoplolaimus galeatus and Tylenchorhynchus claytoni caused a significant reduction of fresh weight of seedling roots. Root and top weights of seedlings grown in soil infested with Meloidodera floridensis or Pratylenchus brachyurus were significantly less than those of seedlings in noninfested soil. Root growth of seedlings was stimulated by the higher inoculum density of Scutellonema brachyurum.  相似文献   

8.
Infection of citrus seedlings by Tylenchulus semipenetrans was shown to reduce subsequent infection of roots by Phytophthora nicotianae and to increase plant growth compared to plants infected by only the fungus. Hypothetical mechanisms by which the nematode suppresses fungal development include nutrient competition, direct antibiosis, or alteration of the microbial community in the rhizosphere to favor microorganisms antagonistic to P. nicotianae. A test of the last hypothesis was conducted via surveys of five sites in each of three citrus orchards infested with both organisms. A total of 180 2-cm-long fibrous root segments, half with a female T. semipenetrans egg mass on the root surface and half without, were obtained from each orchard site. The samples were macerated in water, and fungi and bacteria in the suspensions were isolated, quantified, and identified. No differences were detected in the numbers of microorganism species isolated from nematode-infected and uninfected root segments. However, nematode-infected root segments had significantly more propagules of bacteria at all orchard sites. Bacillus megaterium and Burkholderia cepacia were the dominant bacterial species recovered. Bacteria belonging to the genera Arthrobacter and Stenotrophomonas were encountered less frequently. The fungus community was dominated by Fusarium solani, but Trichoderma, Verticillum, Phythophthora, and Penicillium spp. also were recovered. All isolated bacteria equally inhibited the growth of P. nicotianae in vitro. Experiments using selected bacteria, T. semipenetrans, and P. nicotianae, alone or in combination, were conducted in both the laboratory and greenhouse. Root and stem fresh weights of P. nicotianae-infected plants treated with T. semipenetrans, B. cepacia, or B. megaterium were greater than for plants treated only with the fungus. Phytophthora nicotianae protein in roots of fungus-infected plants was reduced by nematodes (P ≤ 0.001), either alone or in combination with either bacterium. However, treatment with bacteria did not affect P. nicotianae development in roots. The results suggest different mechanisms by which T. semipenetrans, B. cepacia, and B. megaterium may mitigate virulence of P. nicotianae.  相似文献   

9.
Effects of arbuscular mycorrhizal fungus (AMF)Glomus mosseae on plant growth, soil microbial populations and enzymes activities of soils were studied in red clover (Trifolium pratense L.) grown in pots at different cultivated densities. Seeds of red clover were sown with 50 g inoculums ofG. mosseae per pot. After a week, the plants were thinned to 20, 30, 40, 50 and 60 seedlings per pot. Three months after treatment, AMF inoculation significantly stimulated plant growth. Quantities of vesicles and spores, arbuscules and hyphae were the highest when 30 and 50 seedlings were grown per pot, respectively. However, no root was infected in control plants. In all the soil sites, the numbers of fungi and bacteria were followed in the order: root > root surface > rhizospheric. It was indicated that arbuscular mycorrhizal fungus decreased the numbers of fungi and bacteria but improved growth of actinomycetes. Compared to control plants, AMF stimulated activities of phosphatase and urease but decreased invertase.  相似文献   

10.
A container system for rapid infection of roots with pathogenic or mycorrhizal fungi was used to test the effect of the two commercial biological control agents, Trichoderma harzianum and Streptomyces griseoviridis, on the formation of vesicular-arbuscular mycorrhiza in soybean. In the presence of these biocontrol agents, mycorrhiza formation with Glomus mosseae was significantly depressed, particularly with S. griseoviridis. Infection by the root pathogen Rhizoctonia solani was not altered by these agents. Remarkably, not only R. solani but also T. harzianum induced accumulation of large amounts of the phytoalexin glyceollin in the roots. In contrast, roots inoculated with S. griseoviridis or with the mycorrhizal fungus G. mosseae did not accumulate glyceollin.  相似文献   

11.
The nematicidal effect of chitin, relative to other pesticides, was evaluated against two plant-parasitic nematodes, Heterodera avenae and Tylenchulus semipenetrans. Wheat seedlings, grown in soils artificially or naturally infested with H. avenae, were treated with 0.4% (w/w) ClandoSan (CLA) prepared from crustacean chitin, aldicarb (Temik 15G), or ethylene dibromide (EDB 90EC). The CLA treatment significantly increased wheat straw, ear, and average grain dry weights of nematode-infected plants, compared with the other two treatments. In an experiment covering two consecutive seasons, all three treatments reduced the number of cysts in the soil by 60%. In a one-season experiment, CLA reduced the number of cysts by 51% and aldicarb or EDB reduced cyst number by about 40%. A reduction of 50-90% in T. semipenetrans population densities on roots of two citrus rootstocks was recorded following an application of 0.2% (w/w) CLA to the soil.  相似文献   

12.
Summary A greenhouse study was conducted to determine the effects of stockpiling prairie grassland topsoil for 3 years on mycorrhizal development and root and shoot production of slender wheatgrass. The vesicular-arbuscular mycorrhizal (VAM) fungi involved in the symbiosis were also assessed as was the decomposition potential of the soil. During the first week of growth, VAM development in grasses grown in the stockpiled soil lagged behind that observed for grasses in the undisturbed soil. However, by 3 weeks, the mycorrhizal infection in plants in the stockpiled soil had reached levels similar to that in plants in the undisturbed soil. The dominant species of VAM fungi involved in the symbiosis at 8 weeks after planting shifted fromGlomus fasciculatum in the undisturbed soil toG. mosseae in the stockpiled soil. The delay in initial VAM infection and shift in VAM fungal species did not significantly affect plant productivity which was greatest in the stockpiled soil. The greater shoot production exhibited by grasses in the stockpiled soil was attributed to higher levels of NO3-N in the stockpiled than undisturbed soil. The potential of the soil to decay dead slender wheatgrass roots was not altered by stockpiling.  相似文献   

13.
接种菌根真菌对青冈栎幼苗耐旱性的影响   总被引:3,自引:0,他引:3  
利用丛枝菌根真菌摩西球囊霉(Glomus mosseae)、根内球囊霉(Glomus intraradices)和外生菌根真菌彩色豆马勃(Pisolithus tinctorius)对石漠化地区造林树种青冈栎(Cyclobalanopsis glauca)幼苗进行接种试验。在大棚盆栽条件下模拟土壤干旱胁迫,研究菌根真菌对青冈栎生长和耐旱性的影响。结果表明:在土壤干旱条件下,接种菌根处理植株生物量显著高于未接种处理(P0.05),菌根依赖性随土壤水分含量降低而升高;未接种处理植株叶绿素含量在土壤干旱条件下显著降低(P0.05),除接种Pisolithus tinctorius处理外,其它接种处理叶绿素含量无显著变化。土壤干旱使植株体内脯氨酸和可溶性糖含量上升,在中度干旱条件下,接种处理可溶性糖含量均显著高于对照处理,接种Glomus intraradices、Pisolithus tinctorius处理脯氨酸含量显著低于对照(P0.05);在重度干旱条件下,接种Glomus mosseae和Glomus intraradices处理可溶性糖含量显著高于对照处理(P0.05),而相应的脯氨酸含量显著低于对照处理。当土壤水分含量在田间持水量55%—65%时,接种处理植株SOD、POD和CAT酶活性显著高于未接种处理(P0.05),在土壤水分含量降至35%—45%时,Glomus mosseae和Glomus intraradices处理SOD酶活性显著高于对照,并且所有接种处理POD酶活性均显著高于对照。此外,在水分干旱条件下,植株全磷和全钾含量也显著高于未接种处理(P0.05)。研究表明,丛枝菌根真菌和外生菌根真菌均能够侵染青冈栎幼苗根系;在干旱胁迫条件下,接种菌根真菌能够提高青冈栎植株生物量、抗氧化酶活性、增加植株可溶性糖含量和促进植株养分吸收,提高植株耐旱性,从而使青冈栎幼苗在岩溶干旱环境下更容易存活。  相似文献   

14.
Oaks produce acorns containing a large amount of reserves in their cotyledons, which are important for the early development of seedlings. However, it remains unclear at what level oak seedlings will rely on cotyledonary reserves under different soil nutrition levels. We carried out an indoor experiment to quantify seedling growth, mobilization of cotyledonary reserves, and soil-derived N in seedlings of eleven red and white oak species in response to contrasting soil nutrition levels. Our results showed that dry masses of shoots, roots, whole seedlings, and the remnant cotyledons did not vary significantly in response to soil nutrition levels. Moreover, soil-derived N contents in oak seedlings were not significantly different under contrasting soil nutrition levels, reflecting a low morphological and physiological plasticity of oak seedlings to soil fertilization at early growth stage. Lower soil-derived N incorporated into seedlings suggests that oaks rely mainly on cotyledonary reserves for seedling development regardless of soil fertility. A positive correlation between mean fresh masses of acorns and mean dry masses of seedlings at the interspecific level further indicates that reserves in acorns rather than soil nutrition play an important role in supporting oak seedling growth at the early stage.  相似文献   

15.

Aims

Arbuscular mycorrhizal fungi (AMF) can control root-knot nematode infection, but the mode of action is still unknown. We investigated the effects of AMF and mycorrhizal root exudates on the initial steps of Meloidogyne incognita infection, namely movement towards and penetration of tomato roots.

Methods

M. incognita soil migration and root penetration were evaluated in a twin-chamber set-up consisting of a control and mycorrhizal (Glomus mosseae) plant compartment (Solanum lycopersicum cv. Marmande) connected by a bridge. Penetration into control and mycorrhizal roots was also assessed when non-mycorrhizal or mycorrhizal root exudates were applied and nematode motility in the presence of the root exudates was tested in vitro.

Results

M. incognita penetration was significantly reduced in mycorrhizal roots compared to control roots. In the twin-chamber set-up, equal numbers of nematodes moved to both compartments, but the majority accumulated in the soil of the mycorrhizal plant compartment, while for the control plants the majority penetrated the roots. Application of mycorrhizal root exudates further reduced nematode penetration in mycorrhizal plants and temporarily paralyzed nematodes, compared with application of water or non-mycorrhizal root exudates.

Conclusions

Nematode penetration was reduced in mycorrhizal tomato roots and mycorrhizal root exudates probably contributed at least partially by affecting nematode motility.  相似文献   

16.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

17.
Red pines (Pinus resinosa Ait.) were grown in a pasteurized sandy loam either unamended with phosphate or fertilized with one of two levels of phosphate (34 or 136 mg/kg) as superphosphate, and with and without addition of Hebeloma arenosa inoculum. Shoot and total dry weights of mycorrhizal seedlings grown in soil unamended with P were greater than those for nonmycorrhizal seedlings grown in the same soil, but less than the dry weights of seedlings grown in soil amended with middle to high levels of P. Mycorrhizal infection was inhibited at the highest level of P amendment. 31P nuclear magnetic resonance spectra of intact mycorrhizal roots showed the presence of two dominant peaks, orthophosphate (Pi) and polyphosphate (polyP). The polyP peak was absent in spectra of nonmycorrhizal roots. The ratio for areas under the two peaks, Pi/polyP, was 1.8 for mycorrhizal roots grown in both unamended soil and soil that had received middle levels of superphosphate. Apparently, the fungus strongly mediates the supply of phosphate to the tree through the production of polyP, even at growth-limiting levels of soil P, and regulates compartmentalization of P in the mycorrhizal roots.  相似文献   

18.
We investigated belowground responses of Nothofagus alpina seedlings to post-fire conditions during natural regeneration after a wildfire in Chile, focusing on mycorrhizal community and root architecture. The complete root systems of 2-year-old N. alpina seedlings were extracted from a post-fire site with natural regeneration and compared to roots of seedlings from undisturbed forest nearby. Mycorrhizal morphotype richness was determined in each seedling. Morphometric parameters of tertiary root structure and dry biomass of whole root systems were determined in 5 cm vertical intervals and in four lateral root classes. With 43.5% of colonized vital mycorrhizal root tips, the Basidiomycete Descolea antarctica was the most abundant fungal symbiont on post-fire seedlings. Tertiary root morphology of these seedlings was distinct from control plants and characterized by a deep-reaching tap root with rather evenly distributed lateral branches whereas seedlings from the undisturbed site had shallower root systems with most lateral roots concentrated in the upper soil layers. Post-fire seedlings had more mycorrhizal rootlets and mycorrhiza-bearing third order lateral roots than control plants which was expressed in a 34% higher total root number but only a 10% higher total root biomass, although both values were not statistically significant. A major part of these fine roots in seedlings from burnt forest was found in deeper soil horizons, compared to the seedlings from undisturbed forest. According to our results, post-fire conditions clearly favour Descolea antarctica as an early ectomycorrhizal colonizer of Nothofagus seedlings at the studied site. As no significant changes in soil chemistry could be observed at the burnt site, the deep-reaching tertiary root architecture of these seedlings may be interpreted as a response to other abiotic factors like reduced moisture in surface soil.  相似文献   

19.
This study was to determine whether Arthrobotrys flagrans, A. oligospora, and Meria coniospora would control the root-knot nematode Meloidogyne hapla on alfalfa and tomato. Alfalfa seeds were coated with a fungus-rye powder in 2% cellulose and were planted in infested soil. Three-week-old seedlings from seed treated with M. coniospora had 60% and 58% fewer galls in two experiments than did seedlings from untreated seeds. Numbers of J2 in the soil were not reduced. Plant growth did not improve. When seed of tomato were coated with M. coniospora and planted in M. hapla-infested soil, roots had 34% fewer galls and 47% fewer J2 in the soil at 28 days. After 56 days there was no reduction in J2 numbers. Plant growth did not improve. When roots of tomato transplants were dusted with M. coniospora fungus-rye powder or sprayed with a spore suspension before planting in M. hapla-infested soil, 42% and 35%, respectively, fewer galls developed in 28 days on treated roots than on roots not treated with fungus. The numbers of J2 extracted from roots or recovered from soil were not reduced, however, and plant growth did not improve.  相似文献   

20.
实验室条件下五唇兰菌根真菌专一性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用从高原温带兰科植物菌根中获得的22个菌根真菌菌株, 对五唇兰(Doritis pulcherrima)进行了室内种子萌发、原球茎分化和组培苗回接试验, 从交叉回接的角度对附生兰科植物与菌根真菌的生理专一性进行了探讨。经过20周的共生培养, 只有编号为Cf1和Mm1的两个菌株使种子表现出种胚明显膨大的萌发迹象; 9个菌株能够促使原球茎较好地分化发育出根叶; 11个菌株处理苗的平均鲜重增长率高于对照组(156.25%), 其中Mm1的效果达到极显著水平(p = 0.01)。通过根切片显微观察, 在原球茎分化根和回接效果良好的处理苗的根皮层组织发现典型的菌丝团结构, 表明菌根体系已成功建立。温带地生兰菌根真菌对五唇兰种子萌发、原球茎发育和幼苗生长等3个重要生长阶段影响的试验显示, 五唇兰的种子和菌根真菌的共生萌发效果不佳, 而原球茎及幼株更容易与之建立良好的共生关系。同时, 也没有发现同一个真菌菌株能够对五唇兰的种子、原球茎和幼苗均产生促进作用。研究结果表明, 五唇兰的菌根真菌专一性因生理生长阶段的不同而存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号