共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao D. Cai Yongbo Xue Cindy C. Truong Jose Del Carmen-Li Christopher Ochoa Jens T. Vanselow Katherine A. Murphy Ying H. Li Xianhui Liu Ben L. Kunimoto Haiyan Zheng Caifeng Zhao Yong Zhang Andreas Schlosser Joanna C. Chiu 《Current biology : CB》2021,31(3):502-514.e7
- Download : Download high-res image (175KB)
- Download : Download full-size image
2.
Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina 总被引:2,自引:0,他引:2
Yu L Kelly U Ebright JN Malek G Saloupis P Rickman DW McKay BS Arshavsky VY Bowes Rickman C 《Biochimica et biophysica acta》2007,1773(9):1473-1482
The phosphatase of regenerating liver-1, PRL-1, gene was detected in a screen for foveal cone photoreceptor-associated genes. It encodes a small protein tyrosine phosphatase that was previously immunolocalized to the photoreceptors in primate retina. Here we report that in cones and cone-derived cultured cells both PRL-1 activity and PRL-1 gene expression are modulated under oxidative stress. Oxidation reversibly inhibited the phosphatase activity of PRL-1 due to the formation of an intramolecular disulfide bridge between Cys104 within the active site and another conserved Cys, Cys49. This modulation was observed in vitro, in cell culture and in isolated retinas exposed to hydrogen peroxide. The same treatment caused a rapid increase in PRL-1 expression levels in cultured cells which could be blocked by the protein translation inhibitor, cycloheximide. Increased PRL-1 expression was also observed in living rats subjected to constant light exposure inducing photooxidative stress. We further demonstrated that both oxidation and overexpression of PRL-1 upon oxidative stress are greatly enhanced by inhibition of the glutathione system responsible for cellular redox regulation. These findings suggest that PRL-1 is a molecular component of the photoreceptor's response to oxidative stress acting upstream of the glutathione system. 相似文献
3.
4.
Groups of photorefractory female subtropical house sparrows, Passer domestkus, when treated with 6 weeks of a short photocycle (8L : 16D) showed significant ovarian growth on their return to a long photocycle (15L :9D). A 6-hr photophase coupled with scotophase of varying durations does not terminate the refractory period under photoperiod cycles of 12 (6L : 6D), 36 (6L :30D) and 60 (6L : S4D) hr but the refractory period is terminated by light-dark cycles of 24 (6L: 18D), 48 (6L :42D) and 72 (6L : 66D) hr. These results are consistent with the Biinning hypothesis of coincidence between endogenous photosensitive rhythmicity and environmental photoperiod timing that an endogenous circadian rhythm is involved in the maintenance and termination of photorefractoriness. 相似文献
5.
6.
ABSTRACT. Evidence is presented for a circadian control of locomotory activity in the larval stadia of the cricket, Teleogryllus commodus Walker. Under light—dark cycles (LD), maximal activity occurs around the L/D transition and/or in the hours preceding it. Free-running rhythm patterns longer than 24 h are observed in constant light. Re-entrainment to phase advances in the LD cycle is also accompanied by several transient cycles. However, free-running rhythms under constant darkness or transients when exposed to LD cycle delays were not found. LD cycles during the eighth stadium set the phase of a free-running rhythm in the adult, even if the nymph does not show a rhythm. Nymphal activity is often erratic and is disrupted periodically by the moulting cycle, but moulting does not interrupt the operation of the circadian system. The daily timing of the moult itself is not under circadian control. 相似文献
7.
8.
9.
10.
11.
12.
ABSTRACT. The locomotor activity patterns of wildtype Drosophila melanogaster and the mutants so (sine oculis) and sol (small optic lobes) were investigated. In all strains the proportions showing circadian rhythmicity, arrhythmicity and more complex patterns which could not be thus classified were similar. The occurrence of abnormal activity patterns is thus not a property of the mutation as previously claimed (Mack & Engelmann, 1981). In flies with a distinct circadian rhythmicity, the period lengths (τ) varied between strains, τ for wildtype Italy and the mutant so was longer than for wildtype Berlin and the mutant sol. As different τ's have been reported by others, τ does not seem to be closely determined for Drosophila melanogaster. Many flies exhibited two rhythms simultaneously, one with τ shorter and one with τ longer than 24 h, apparently implying two-oscillator control of the locomotor activity. The eyeless so mutants were entrained by LD cycles, so the compound eyes are not necessary, and so must possess the relevant photoreceptor(s) elsewhere. This may therefore also be true for the wildtype. Histology of the so adults revealed no correlation between the degree of reduction in the medulla and the occurrence of abnormal activity patterns. Since the only structures common to the medulla of so and sol are known to be large tangential cells, it is concluded that either they are of importance for the rhythmic system, or the oscillator(s) controlling locomotor activity is (are) not located in the medulla. 相似文献
13.
T. Morita R. Koikawa K. Ono Y. Terada K. Hyun H. Tokura 《Biological Rhythm Research》2013,44(3):271-277
The study investigated the relationship between the circadian variation of salivary melatonin and the amount of light received during the day and night. Forty one females served as subjects. An illuminance meter worn on the wrist of the non-dominant arm measured the amount of light which subjects leading a diurnal lifestyle received during two consecutive days. Light received from the time of rising to 18:00h was defined as ‘daytime light’, and that from 18:00h to the time of retiring as ‘nighttime light’. The average amount of light over the two days was 48 × 10 4 lx during the daytime and 11 × 10 4 lx during the nighttime. Saliva was collected every 4h in order to measure melatonin secretion. Peaks of melatonin secretion were observed at 14:00h and 18:00h in the subjects who had received lesser amounts of light during the daytime and nighttime. Melatonin secretion was high around 22:00h and peaked around 02:00h in the subjects who had received greater amounts of light during the daytime and lesser amounts of light during the nighttime. Nocturnal melatonin secretion was suppressed in the subjects who received greater amounts of light during the nighttime. Thus, the amount of light received during the daytime and the nighttime during the course of a diurnal lifestyle could have a profound influence on the circadian pattern of melatonin secretion. 相似文献
14.
Sim Alistair T. R. Collins Elizabeth Mudge Lisa-Maree Rostas John A. P. 《Neurochemical research》1998,23(4):487-491
The activity and subcellular distribution of protein phosphatases 1 and 2A were measured in chicken forebrain and cerebellum during post-hatch development. At all post-hatch ages, a large proportion of PP1 and PP2A was membrane bound and these enzymes were less active than their cytosolic counterparts. The protein concentration of PP1 in the membranes increased 40% between 2 and 14 days and a further 60% between 14 days and adult, whereas the PP1 enzyme activity in the membranes progressively decreased. In contrast to PP1, the protein concentration of PP2A remained constant in all fractions during post-hatch development, and the enzyme activity of PP2A did not change except for a decrease in the membrane-bound activity between 2 and 14 days. These results show that the subcellular distribution and activity of PP1 is selectively regulated during post-hatch development and that membrane association and inactivation of PP1 are independent events. 相似文献
15.
Tadahiro Goda Jennifer R. Leslie Fumika N. Hamada 《Journal of visualized experiments : JoVE》2014,(83)
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals. 相似文献
16.
Takeo Deguchi 《Molecular and cellular biochemistry》1979,27(1):57-66
Conclusion The circadian rhythm of melatonin synthesis in the pineal glands of various species has been summarized. The night-time elevation of melatonin content is in most if not all cases regulated by the change of N-acetyltransferase activity. In mammals, the N-acetyltransferase rhythm is controlled by the central nervous system, presumably by suprachiasmatic nuclei in hypothalamus through the superior cervical ganglion. In birds, the circadian oscillator that regulates the N-acetyltransferase rhythm is located in the pineal glands. The avian pineal gland may play a biological clock function to control the circadian rhythms in physiological, endocrinological and biochemical processes via pineal hormone melatonin. 相似文献
17.
Spontaneous activity and the body temperature of laboratory mice were recorded telemetrically using implantable transmitters. Following ten control days (L : D = 12 : 12; light from 07:00 to 19:00), the LD cycle was phase-advanced by shortening the light time by 8 h. Recordings were continued for a further 3 weeks. The raw temperature data were unmasked or ‘purified’ — that is, the temperature changes due to locomotor activity were removed, so revealing the endogenous component of the rhythm — using a regression method previously developed by us. The circadian rhythms of activity and measured body temperature resynchronized on average after 8 days. During resynchronization, both rhythms tended to show two components, one adjusting by a phase advance and the other by a phase delay. However, after purification of the body temperature rhythm, only the advancing component remained. These results indicate that the delaying component of the measured temperature rhythm was caused by masking due to activity, and that the endogenous component of this rhythm did not divide into two components during the resynchronization process. Also, the endogenous component of the circadian rhythm of body temperature and one component of the activity rhythm seemed to be controlled by the same oscillator. It remains uncertain how the other component of the activity rhythm is regulated. 相似文献
18.
Many core oscillator components of the circadian clock are nuclear localized but how the phase and rate of their entry contribute to clock function is unknown. TOC1/PRR1, a pseudoresponse regulator (PRR) protein, is a central element in one of the feedback loops of the Arabidopsis clock, but how it functions is unknown. Both TOC1 and a closely related protein, PRR5, are nuclear localized, expressed in the same phase, and shorten period when deficient, but their molecular relationship is unclear. Here, we find that both proteins interact in vitro and in vivo through their conserved N‐termini. TOC1–PRR5 oligomerization enhances TOC1 nuclear accumulation two‐fold, most likely through enhanced nuclear import. In addition, PRR5 recruits TOC1 to large subnuclear foci and promotes phosphorylation of the TOC1 N‐terminus. Our results show that nuclear TOC1 is essential for normal clock function and reveal a mechanism to enhance phase‐specific TOC1 nuclear accumulation. Interestingly, this process of regulated nuclear import is reminiscent of similar oligomeric pairings in animal clock systems (e.g. timeless/period and clock/cycle), suggesting evolutionary convergence of a conserved mechanism across kingdoms. 相似文献